Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
валюша.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.62 Mб
Скачать

33. Применение градиентных методов оптимизации в электроэнергетике.

В градиентных методах движение всегда осуществляется в направлении наи­большего убывания целевой функции . Вектор градиента определяется через производные функции F(x) по всем независимым переменным .

Таким образом, чтобы воспользоваться рекуррентным выраже­нием градиентного метода , необходимо на каждом шаге итерационного процесса вычислять значения производ­ных . Для организации скорейшего спуска необходимо определение оптимальной длины шага , которая в этом случае удовлетво­ряет условию . Это условие означает, что результирующий вектор спуска должен быть таким, чтобы новый градиент стал ортогонален предыдущему.

Достоинство этого метода состоит в том что, несмотря на сложность и большой объем вычислений на каждом шаге, он в сочетании с методом наискорейшего спуска дает очень быструю сходимость.

34.Метод проектирования градиента

Метод проектирования градиента. Пусть требуется найти минимум выпуклой функции при условии, что независимые переменные удовлетворя­ют системе из P линейных ограничений в форме нера­венств, т. е.

.

В начальной точке Х°, фазовые координаты которой удовлетворяют условиям ограничений , определя­ется вектор-градиент и в направлении антиградиента производится движение за границу до­пустимой области до точки x': , где –множитель, определяющий величину шага за границу допустимой области.

Полученная точка X1 проектируется на поверхность ограничений , в результате чего определится точ­ка . Затем из точки так же как и из точки Х°, в на­правлении антиградиента совершается движение за границу допустимой области в точку .

Полученная точка X2 проектируется на поверхность ограничений, в результате чего получается точка и т. д.

Если начальная точка Х° находится вне допустимой области, она вначале должна быть спроектирована на поверхность ограничений, после чего осуществляется описанная процедура движения. Это позволяет решать задачу от любого начального приближения.

35. 36. Учет ограничений в форме равенств при решении задач оптимизации в электроэнергетике. 36. Приведенный градиент

При решении задачи оптимизации режима должны учитывать­ся уравнения связи, дающие зависимости между переменными y и x. Количество зависимых переменных M определяется числом уравнений связи, которые можно рассматривать как ограничения, выраженные в форме равенств. В качестве таких ограничений обычно принимаются УУН, записанные в форме баланса токов каждого узла, кроме балансирующего или в форме баланса мощностей каждого узла (1), где – общее число узлов в системе без балансирующего. Целевую функцию можно представить в виде , где x, y – векторы независимых и зависимых пере­менных, связь между которыми выражается системой уравнений в виде вектор – функции .

В градиентном методе необходимо определить направление мак­симального уменьшения целевой функции, не нарушая связей меж­ду переменными. Поэтому найдем связь между приращениями зави­симых и независимых переменных.

Рассмотрим точку (х°, у°) с координатами , удовлетворяющую системе равенств : (2), .

Это означает, что рассматриваются режимы энергосистемы, удовле­творяющие (1).

Разложив нелинейные уравнения в точке (х°, y°) в ряд Тейлора и ограничившись членами, содержащими производные не выше первого порядка, получим , .

С учетом (2) в матричной записи последняя система уравнений приобретает вид , откуда, переходя к бесконечно малым приращениям, получим (3).

Здесь – матрицы частных производных уравнений связи по независимым и зависимым переменным.

С учетом зависимости y(x) целевую функцию F(x,y) можно представить как F(x, y(x)). Выражение градиента приобретает вид

ст2. 35. 36. Учет ограничений в форме равенств при решении задач оптимизации в электроэнергетике. 36. Приведенный градиент

что в матричной форме записывается двумя способами:

; (4), , – векторы - столбцы частных производных целевой функции по независимым и зависимым переменным.

Вектор производных целевой функции по независимым перемен­ным dF/dx называется приведенным градиентом. С учетом соотно­шения (3) представим (4) в виде .

Вектор dF/dx рассматривается как возможное направление и ис­пользуется в рекуррентном выражении итерационной процедуры .

Наряду с методом приведенного градиента ограничения в форме равенств учитывает также метод Лагранжа. При отыскании экстремума целевой функции с учетом ограничений в форме равенств методом Лагранжа вводится новая функция Лагранжа L, в которой все переменные рассматриваются как независимые. В данном случае нет необхо­димости вычислять матрицу частных производных [dу/dx], в чем и заключается преимущество метода по сравнению с предыдущим. Недостатком метода является увеличение размерности задачи за счет введения неопределенных множителей Лагранжа, число кото­рых равно числу уравнений связи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]