
- •Информация в материальном мире. Данные. Носители данных. Операции с данными.
- •Кодирование данных двоичным кодом. Кодирование целых и действительных чисел. Перевод десятичного числа в двоичную систему.
- •3. Кодирование текстовых данных. Различие кодировок ascii, Windows-1251, кои-8. Универсальная кодировка текстовых данных unicode.
- •5. Основные структуры данных. Линейная, иерархическая, табличная. Дихотомия данных.
- •6. Файлы и файловая структура. Единицы измерения данных. Единицы хранения данных.
- •7. Предмет и задачи информатики. Истоки и предпосылки информатики.
- •9. Методы классификации компьютеров. По назначению, по уровню специализации, по типоразмерам, по совместимости.
- •10 Состав вычислительной системы (пк). Аппаратная, программная конфигурация. Классификация прикладных программных средств.
- •11. Классификация служебных программных средств
- •12.Устройство персонального компьютера. Базовая аппаратная конфигурация
- •Внутренние устройства системного блока.
- •Системы, расположенные на материнской плате. Оперативная память. Принцип работы. Характеристики. Процессор. Принцип работы. Связь с остальными устройствами пк. Системы команд cisc, risc.
- •15. Основные параметры процессоров для пк. Единицы измерения данных параметров. Принципы работы процессора.
- •16. Микросхема пзу и система bios.
- •17. Энергонезависимая память cmos.
- •18. Шинные интерфейсы материнской платы.
- •21. Устройства вывода данных. Их характеристики, принципы работы.
- •22 Устройства хранения данных.
- •23. Системный блок пк. Варианты исполнения.
- •24.Монитор. Принципы работы. Размеры. Частота обновления кадров.
- •Клавиатура. Принцип действия. Состав клавиатуры. Определение alt-кодов произвольных символов. Настройка клавиатуры.
- •Мышь. Принцип действия. Чувствительность.
- •27.Внутренние устройства системного блока
- •29. Жесткий диск. Устройство. Основные параметры.
- •30. Дисководы оптических дисков. Виды, емкость, характеристики.
- •31. Видеокарта (видеоадаптер). Разрешение экрана жк-монитора. Цветовое разрешение. Видеоускорение.
- •34 Микросхема пзу и система bios
- •35. Энергонезависимая память cmos.
- •36.Шинные интерфейсы материнской платы.
- •37. Периферийные устройства пк. Устройства ввода графической информации. Основные параметры.
- •39. Устройства хранения данных.
- •41. Виды интерфейсов пользователя ос. Активные и пассивные элементы управления. Обеспечение автоматического запуска ос.
- •42. Организация файловой системы. Наименьшая единица хранения данных. Наименьшая единица адресации к данным. Системы fat32 и ntfs. Сравнение эффективности их работы.
- •43. Обслуживание файловой структуры, происходящее под управлением ос. Основные операции.
- •46 Управление установкой, исполнением и удалением приложений. Понятие многозадачности. Вопросы надежности.
- •47. Обеспечение взаимодействия с аппаратным обеспечением. Принцип динамического распределения ресурсов ос.
- •48.Обслуживание компьютера. Средства проверки, сжатия дисков. Средства управления виртуальной памятью. Средства кеширования дисков
- •Ввод – вывод данных, комментарии. Структура программы.
- •51. Критерии качества программ.
- •52. Условный оператор. Логические операторы. Синтаксис условной инструкции if-else. Вложенные условные инструкции. Пример программы попадания точки с координатами (X,y) в одну из четвертей плоскости.
- •53. Операторы сравнения. Логические операторы. Примеры.
- •54. Изменения порядка вычислений. Оператор приращения. Префиксная и постфиксная формы оператора. Их различие. Примеры.
- •55. Оператор уменьшения на 1. Префиксная и постфиксная формы.
- •58 Оператор for – бесконечный цикл. Оператор for – пустой цикл.
- •59. Цикл while с постусловием. Синтаксис. Различие в выполнении с оператором while с предусловием.
- •60.Бесконечные циклы
- •61. Оператор for – бесконечный цикл.
- •62. Оператор for – пустой цикл. Цикл for без тела цикла
- •63. Цикл for c переменной, отличной от int
- •65. Применение оператора цикла while для суммирования рядов.
- •66. Оператор выбора (switch). Выбор на множестве условий.
- •67. Оператор switch – использование break
- •69. Динамическое распределение памяти. Указатели. Создание указателей. Выделение памяти.
- •70 Создание массива с помощью оператора new. Проверка значения, возвращаемого new. Освобождение памяти. Общая схема. Операции над указателями.
- •71. Функции. Объявление функций. Передача массива в качестве параметра.
- •73. Объявление функции. Передача имен функций и указателей через список аргументов.
- •74.Передача массива в качестве параметра.
- •77. Методы растрирования. Растрирование с частотной, амплитудной, стохастической модуляцией. Связь между разрешением оригинала, частотой растра и градацией уровней тона.
- •78. Математические основы векторной графики. Точка, прямая, отрезок, кривые второго и третьего порядка. Кривые Безье.
- •79. Форматы графических данных. Понятие цвета. Способы описания цвета. Модели rgb, cmyk. Программные средства для работы с растровой, векторной графикой.
5. Основные структуры данных. Линейная, иерархическая, табличная. Дихотомия данных.
Работа с большими наборами данных автоматизируется проще, когда данные упорядочены, то есть образуют заданную структуру. Существует три основных типа структур данных: линейная, иерархическая, табличная.
Линейные структуры — это хорошо знакомые нам списки (к примеру, каждой строке или странице соответствует определенный номер). Проставляя номера на отдельных страницах рассыпанной книги, мы создаем структуру списка. То есть, такая структура имеет нумерацию, значения которой не повторяются.
Для быстрого поиска данных существует иерархическая структура. Так, например, книги разбивают на части, разделы, главы, параграфы и т. п. Основным недостатком иерархических структур данных является увеличенный размер пути доступа.
Табличные структуры отличаются от списочных тем, что элементы данных определяются адресом ячейки, который состоит не из одного параметра, как в списках, а из нескольких. Для таблицы умножения, например, адрес ячейки определяется номерами строки и столбца.
Дихотомия данных. Очень часто бывает так, что длина пути доступа к файлу оказывается больше, чем длина самих данных — основной недостаток иерархических структур. В информатике применяют методы для регуляризации иерархических структур с тем, чтобы сделать путь доступа компактным, один из методов — дихотомия. В иерархической структуре, построенной методом дихотомии, путь доступа к любому элементу можно представить как путь через рациональный лабиринт с поворотами налево (0) или направо (1) и, таким образом, выразить путь доступа в виде компактной двоичной записи (например, в виде 1010 кода пути). То есть, путь формируется разбиением объекта на 2 противоположности с дальнейшим исходом, пример:
6. Файлы и файловая структура. Единицы измерения данных. Единицы хранения данных.
Единицы представления данных
Кодовая таблица - это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standard Code for Information Interchange - Американский стандартный код для обмена информацией). Для хранения двоичного кода одного символа выделен 1 байт = 8 бит, можно отобразить 256 различных символов.
1 Кбайт = 1024 байт
1 Мбайт =1024 Кбайт = 1020 байт
1 Гбайт = 1024 Мбайт = 1030 байт
1 'Гбайт = 1024 Гбайт =1040 байт
Единицы хранения данных
В качестве единицы хранения данных принят объект переменной длины, называемый
файлом. Файл — это последовательность произвольного числа байтов, обладающая
уникальным собственным именем. Имя файла включает адресные данные, сведения о типе данных.
Понятие о файловой структуре
Требование уникальности имени файла очевидно —• без этого невозможно гарантировать однозначность доступа к данным. Уникальность имени файла обеспечивается тем, что полным именем файла считается собственное имя файла вместе с путем доступа к нему.
Хранение файлов организуется в иерархической структуре, которая называется файловой структурой. В качестве вершины структуры служит имя носителя, на котором сохраняются файлы. Далее файлы группируются в каталоги (папки), внутри которых могут быть созданы вложенные каталоги {папки).