Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геометрия.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.95 Mб
Скачать

Элементы векторной алгебры Лекция 1 Векторы. Линейные операции над векторами

§1. Понятие вектора

Направленным отрезком называется отрезок, у которого указаны начало и конец. Обозначение:

Вектором называется направленный отрезок. Обозначение: (рис. 1).

Вектор называется нулевым, если его начало и конец совпадают. Обозначение: .

Векторы и называются сонаправленными (противоположно направленными), если лучи [AB) и [CD) сонаправлены (противоположно направлены). Обозначение: ( ).

На рис. 2 , .

Векторы и называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Обозначение: || .

Нулевой вектор считается коллинеарным любому вектору.

Векторы и называются компланарными, если существует плоскость, которой они параллельны.

Длиной вектора называется расстояние между его началом и концом. Обозначение длины вектора : .

Длина нулевого вектора равна 0, т.е. .

Вектор называется единичным, если его длина равна единице.

В пространстве существует бесконечное множество единичных векторов.

Два вектора называются равными, если они сонаправлены и длины их равны. Обозначение: .

Два вектора называются противоположными, если они противоположно направлены и длины их равны.

Вектор, противоположный вектору , обозначается .

Откладыванием вектора от точки А называется процесс построения такой точки М, что .

В

Алгоритм этого процесса таков: пусть дан вектор и точка А. Сначала строят луч , исходящий из точки А и сонаправленный с вектором (рис. 3). Затем на луче откладывают с помощью циркуля отрезок АМ, длина которого равна длине вектора . Вектор  искомый, т.е. .

М

А

Рис. 3

§2. Сложение и вычитание векторов

Линейными операциями над векторами называется сложение, вычитание векторов и умножение вектора на число.

Результатом сложения векторов является их сумма. Сумма векторов и обозначается .

Существует два правила сложения двух векторов: правило треугольника и правило параллелограмма.

Правило треугольника

Чтобы сложить векторы и , надо взять произвольную точку и от нее отложить последовательно сначала вектор , затем вектор . Вектор, начало которого совпадает с началом вектора (т.е. первого вектора), а конец – с концом вектора (т.е. второго вектора), есть искомая сумма. На рис. 4 .

По правилу треугольника можно складывать любые векторы.

Коротко правило треугольника можно записать так:

для любых трех точек А,В и С .

Правило параллелограмма

Чтобы сложить векторы и , надо привести их к общему началу, т.е. взять произвольную точку А, построить такие точки В и С, что и , и достроить полученную фигуру до параллелограмма . Вектор - искомая сумма (рис. 5).

По правилу параллелограмма можно складывать только неколлинеарные векторы.

Свойства сложения векторов:

10. .

20. .

30. .

40. .

Суммой трех векторов и называется вектор . Учитывая свойство 40, скобки можно опустить и обозначать сумму в виде .

Суммой n векторов называется вектор и обозначается так: .

При построении суммы n векторов пользуются правилом многоугольника.