- •1Вопрос. Понятие методики судебной экспертизы.
- •2Вопрос. . Понятие метода судебной экспертизы
- •4 Вопрос.
- •6 Вопрос.
- •7 Вопрос.
- •20. Распределение Стьюдента. Коэффициент Стьюдента
- •12. Вопрос.
- •16. Вопрос.
- •10 Вопрос.
- •13. Вопрос.
- •14. Вопрос.
- •15. Вопрос.
- •17. Вопрос. Среднее арифметическое
- •18. Вопрос.
- •19. Вопрос.
- •Понятие и элементы полевой криминалистики.
- •Проведение измерений в условиях пересеченной местности.
- •28.Способы ориентирования на местности и привязка места происшествия к окружающей местности.
- •3.1. Метод Болотова
- •3.2. Привязка по створам
- •3.3. По линейному и боковому ориентиру.
- •27.Фиксация взаиморасположения объектов и следов.
- •30.Природа света.
- •24. Состав наборов технических средств для работы в «полевых» условиях.
- •39. Цвет
- •40. Линзы. Преломление изображения в линзах
- •42. Плоские и сферические зеркала
- •43. Построение изображений в зеркале.
- •45. Проекционные оптические приборы.
- •46. Фотоаппарат
- •47. Глаз как оптическая система. Лупа.
- •48. Микроскоп
- •49. Разрешающая способность и увеличение оптических приборов
- •50. Погрешности оптических приборов
- •51. Различные виды микроскопов, используемые в суд экспертизе
- •52. Оптическая световая микроскопия и ее использование для исследования объектов суд экспертизы
- •54. Электронная микроскопия, ее виды и использование для исследования объектов суд экспертизы
- •55. Понятие электромагнитных волн
- •53. Люминесцентная микроскопия и ее использования для исследования объектов суд экспертизы
- •57. Способы исследования электромагнитных волн различной длины.
- •58. Шкала электромагнитных волн.
- •59. Видимая и невидимая зоны шкалы электромагнитных волн. Свойства электромагнитного излучения в различных областях спектра.
- •60. Ультрафиолетовая, инфракрасная микроскопия и использование ее для исследования объектов судебной экспертизы.
- •61. Дисперсия и цвет тел.
- •62. Понятие спектра. Типы спектров, используемых в судебной экспертизе.
- •63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
- •64. Спектральный состав света различных источников. Спектры и спектральные закономерности.
- •65. Спектральные аппараты.
- •66. Действия света на вещество. Фотоэлектрический эффект.
- •67. Понятие биологических методов.
- •68. Поиск и изъятие следов биологического происхождения на месте происшествия.
- •69. Основы и возможности днк-анализа тканей и выделений человека.
- •70. Молекулярно-генетический идентификационный анализ
- •71. Понятие запаха, пахучих (запаховых) следов. Изъятие запаховых следов, правила упаковки запахоносителей.
- •73. Метод ольфакторного анализа пахучих следов человека с применением собак-детекторов.
- •74. Понятия субъект и объект в исследовании запаховых следов человека с применением собак-детекторов.
- •75. Периодический закон д.И. Менделеева.
- •Основные постулаты н. Бора
- •Понятие вещества, молекулы, атома, химического элемента
- •Строение атома. Понятие ионов. Ионная и ковалентная связи в молекуле
- •Строение молекул. Теория химического строения а.М. Бутлерова
- •Структура вещества. Деление по агрегатному состоянию. Кристаллические и аморфные вещества. Высокомолекулярные соединения
- •Механические свойства
- •Тепловые свойства
- •Электрические свойства
- •Магнитные свойства
- •Растворы, растворители, растворяемые вещества
- •Понятие химических методов исследования, их применение при исследовании объектов судебной экспертизы
- •Методы разделения и концентрирования
- •Классификация методов разделения и концентрирования
- •Методы качественного химического анализа
- •Методы определения количественного состава соединений
- •Основные физические величины
- •Понятие физических методов и их классификация
- •Использование физических методов при экспертном исследовании
- •Понятие физической величины «плотность». Методы определения плотности
- •Понятие физической величины «масса». Методы определения массы
- •99.Классификация фотометрических методов анализа
- •95. Понятие физико-химические методы анализа
- •96. Классификация физико-химйческих методов анализа.
- •98. Классификация электрометрических методов анализа.
- •100.Атомно-абсорбционная спектроскопия и использование атомно-абсорбционной спектроскопии в судебной экспертизе.(применение в суд. Экспертизе не нашла)
- •101. Атомно-эмиссионный спектральный анализ и использование атомно-эмиссионной спектроскопии в судебной экспертизе.
- •102. Рентгеновский анализ, использование рентгеновского анализа в судебной экспертизе.
- •104. Масс-спектрометрические методы анализа.
- •105. Молекулярный спектральный анализ(мса)
- •106. Спектроскопия в уф - и видимой области. Люминесцентный анализ.
- •107. Инфракрасная спектроскопия и спектроскопия комбинационного рассеивания.
- •108. Радиоспектроскопические методы анализа.
- •109.Газовая хромотография
- •110. Жидкостная хроматография и использование ее в судебной экспертизе
- •111. Понятие хроматографии.
- •112. Тонкослойная хроматография
- •113. Понятие сорбции и ее виды.
Проведение измерений в условиях пересеченной местности.
27.1. Измерение расстояний с помощью дальномеров
Существует два вида дальномеров – оптические и физические. Принцип работы оптического дальномера основан на решении прямоугольного и равнобедренного треугольника по двум элементам – острому углу и противолежащей ему стороне. Противолежащая сторона (базис) имеет постоянное значение, т.е. две оптические оси, вынесенные на определенное расстояние – 0,3…1,0 метра.
При измерении через монокуляр дальномера наблюдается выбранный объект. Этот объект наблюдается в круге, разделенном по вертикале на две части. Первоначально объект наблюдается разделенным по вертикале «раздваивается». Путем вращения рейки наблюдатель добивается совмещения двух половинок объекта, после чего считывает по шкале показания дальномера. Дальномер саперный перескопический марки ДСП – 30 позволяет производить измерение дальности до 2000 метров с точностью 0, 5 % от дальности.
Физические дальномеры представляют собой оптико-электронные приборы. Принцип их работы основан на измерении интервалов времени, за которое импульс света проходит до объекта и обратно (квантовый дальномер), или разности фаз излученного и отраженного от объекта света (фазовый дальномер). Передатчик дальномера излучает мощный монохроматический импульс к объекту, расстояние до которого надо измерить. Часть излучаемой энергии отводится к приемнику и запускает схему измерения времени – измеритель временных интервалов. Импульс, пришедший в приемник после отражения от объекта, останавливает измеритель временных интервалов и на табло счетчика высвечивается измеренное расстояние в метрах. Точность измерения составляет 0,01 % от дальности.
27.2 Определение расстояний по угловым размерам предметов
В основе этого способа лежит зависимость между угловыми и линейными величинами. Способ применяется, когда известны линейные размеры удаленного предмета или объекта, до которого измеряется расстояние. Угловые размеры объекта измеряются в угловых деления угломера (тысячные) с помощью бинокля. Расстояние до объекта измеряется по формуле:
В
Д = _____ 1000,
У
где В – высота (ширина) объекта, м;
У – угловая величина предмета, тыс.
Определение расстояний геометрическими построениями на местности.
Способ применяется при измерении расстояний через труднопроходимые и непроходимые препятствия (рек, болот, ущелий и др.) построением на местности прямоугольного треугольника. Из геометрии известно, что, зная два угла треугольника и длину стороны между ними, можно определить длины двух других сторон. Приведем пример:
В результате осмотра места происшествия требуется определить ширину реки. Для этого на противоположном берегу выбирается объект (ориентир, - камень, дерево, откос обрыва и т.д.). На своем берегу откладывается база длиной, равной одной пятой (1/ 5) глазомерного определения ширины реки, но всегда не менее 30 метров. При этом между отложенной базой и направлением на выбранный предмет на противоположном берегу должен быть прямой – 90 градусов.
Пусть мы на глаз определили ширину реки 250 метров, следовательно, база должна составлять 50 метров. Отложив базу, измерить угол АСВ (Рис. № 2) на выбранный предмет. Ширина реки как сторона АВ треугольника АВС определяется как:
АВ = ВС х tg (АСВ)
Сложность данного расчета заключается в определении тангенса угла АСВ. Этот угол определяется транспортиром на полученном чертеже. Существует другой вариант проведения расчетов – масштабный. В результате проведенных измерений и фиксации углов вы получили чертеж в виде треугольника АВС, при этом сторона ВС равна 50 метрам. Применяя теорему подобия геометрических фигур справедливо будет написать такое равенство:
АВ = Ш
ВС Б ,
Где, Ш – ширина реки;
Б – база, равная 50 м.
Отсюда, ширина реки равна Ш= АВ х Б
ВС
На составленном нами чертеже АВ = 184 мм ; ВС = 42 мм , подставляем эти данные в формулу:
Ш = 184 х 50 = 219 м
42
