
- •1Вопрос. Понятие методики судебной экспертизы.
- •2Вопрос. . Понятие метода судебной экспертизы
- •4 Вопрос.
- •6 Вопрос.
- •7 Вопрос.
- •20. Распределение Стьюдента. Коэффициент Стьюдента
- •12. Вопрос.
- •16. Вопрос.
- •10 Вопрос.
- •13. Вопрос.
- •14. Вопрос.
- •15. Вопрос.
- •17. Вопрос. Среднее арифметическое
- •18. Вопрос.
- •19. Вопрос.
- •Понятие и элементы полевой криминалистики.
- •Проведение измерений в условиях пересеченной местности.
- •28.Способы ориентирования на местности и привязка места происшествия к окружающей местности.
- •3.1. Метод Болотова
- •3.2. Привязка по створам
- •3.3. По линейному и боковому ориентиру.
- •27.Фиксация взаиморасположения объектов и следов.
- •30.Природа света.
- •24. Состав наборов технических средств для работы в «полевых» условиях.
- •39. Цвет
- •40. Линзы. Преломление изображения в линзах
- •42. Плоские и сферические зеркала
- •43. Построение изображений в зеркале.
- •45. Проекционные оптические приборы.
- •46. Фотоаппарат
- •47. Глаз как оптическая система. Лупа.
- •48. Микроскоп
- •49. Разрешающая способность и увеличение оптических приборов
- •50. Погрешности оптических приборов
- •51. Различные виды микроскопов, используемые в суд экспертизе
- •52. Оптическая световая микроскопия и ее использование для исследования объектов суд экспертизы
- •54. Электронная микроскопия, ее виды и использование для исследования объектов суд экспертизы
- •55. Понятие электромагнитных волн
- •53. Люминесцентная микроскопия и ее использования для исследования объектов суд экспертизы
- •57. Способы исследования электромагнитных волн различной длины.
- •58. Шкала электромагнитных волн.
- •59. Видимая и невидимая зоны шкалы электромагнитных волн. Свойства электромагнитного излучения в различных областях спектра.
- •60. Ультрафиолетовая, инфракрасная микроскопия и использование ее для исследования объектов судебной экспертизы.
- •61. Дисперсия и цвет тел.
- •62. Понятие спектра. Типы спектров, используемых в судебной экспертизе.
- •63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
- •64. Спектральный состав света различных источников. Спектры и спектральные закономерности.
- •65. Спектральные аппараты.
- •66. Действия света на вещество. Фотоэлектрический эффект.
- •67. Понятие биологических методов.
- •68. Поиск и изъятие следов биологического происхождения на месте происшествия.
- •69. Основы и возможности днк-анализа тканей и выделений человека.
- •70. Молекулярно-генетический идентификационный анализ
- •71. Понятие запаха, пахучих (запаховых) следов. Изъятие запаховых следов, правила упаковки запахоносителей.
- •73. Метод ольфакторного анализа пахучих следов человека с применением собак-детекторов.
- •74. Понятия субъект и объект в исследовании запаховых следов человека с применением собак-детекторов.
- •75. Периодический закон д.И. Менделеева.
- •Основные постулаты н. Бора
- •Понятие вещества, молекулы, атома, химического элемента
- •Строение атома. Понятие ионов. Ионная и ковалентная связи в молекуле
- •Строение молекул. Теория химического строения а.М. Бутлерова
- •Структура вещества. Деление по агрегатному состоянию. Кристаллические и аморфные вещества. Высокомолекулярные соединения
- •Механические свойства
- •Тепловые свойства
- •Электрические свойства
- •Магнитные свойства
- •Растворы, растворители, растворяемые вещества
- •Понятие химических методов исследования, их применение при исследовании объектов судебной экспертизы
- •Методы разделения и концентрирования
- •Классификация методов разделения и концентрирования
- •Методы качественного химического анализа
- •Методы определения количественного состава соединений
- •Основные физические величины
- •Понятие физических методов и их классификация
- •Использование физических методов при экспертном исследовании
- •Понятие физической величины «плотность». Методы определения плотности
- •Понятие физической величины «масса». Методы определения массы
- •99.Классификация фотометрических методов анализа
- •95. Понятие физико-химические методы анализа
- •96. Классификация физико-химйческих методов анализа.
- •98. Классификация электрометрических методов анализа.
- •100.Атомно-абсорбционная спектроскопия и использование атомно-абсорбционной спектроскопии в судебной экспертизе.(применение в суд. Экспертизе не нашла)
- •101. Атомно-эмиссионный спектральный анализ и использование атомно-эмиссионной спектроскопии в судебной экспертизе.
- •102. Рентгеновский анализ, использование рентгеновского анализа в судебной экспертизе.
- •104. Масс-спектрометрические методы анализа.
- •105. Молекулярный спектральный анализ(мса)
- •106. Спектроскопия в уф - и видимой области. Люминесцентный анализ.
- •107. Инфракрасная спектроскопия и спектроскопия комбинационного рассеивания.
- •108. Радиоспектроскопические методы анализа.
- •109.Газовая хромотография
- •110. Жидкостная хроматография и использование ее в судебной экспертизе
- •111. Понятие хроматографии.
- •112. Тонкослойная хроматография
- •113. Понятие сорбции и ее виды.
Строение молекул. Теория химического строения а.М. Бутлерова
Первоначальные представления о молекуле как некоторой связанной совокупности атомов восходят еще к М.В.Ломоносову. Ломоносов, в частности, предполагал возможность существования разных молекул, одинаковых по атомному составу, но различающихся способом связи атомов.
Разработка общей и последовательной классической теории строения молекул связана, с именем А.М.Бутлерова. В 1861г. А.М.Бутлеров выдвигает теорию, сущность которой можно сформулировать следующим образом:
а) атомы в молекуле соединяются друг с другом в определенном порядке;
б) соединение атомов происходит в соответствии с их валентностью;
в) свойства вещества зависят не только от природы атомов и от их количества, но и от их расположения, т.е. от химического строения молекул.
Бутлеров рассматривал молекулу как динамическое образование. Намеченная им принципиальная программа развития теории предполагала рассмотрение внутренних движений эффективных атомов в молекуле и теории вращения как целого.
Структура вещества. Деление по агрегатному состоянию. Кристаллические и аморфные вещества. Высокомолекулярные соединения
Существует 3 основных агрегатных состояния вещества: твердое, жидкое, газообразное.
Газообразное – в нем энергия межмолекулярного взаимодействия частиц меньше их кинетической энергии. Поэтому молекулы (атомы) газа не удерживаются вместе, а свободно перемещаются в объеме. Слабое межмолекулярное взаимодействие обуславливает малую плотность газа, способность оказывать давление на стенки сосуда. Молекулы газа находятся в беспорядочном хаотичном движении.
Жидкое – в нем энергия межмолекулярного взаимодействия частиц соизмерима с кинетической энергией движения частиц. Жидкое состояние является промежуточным между газообразным и кристаллическим. Сходство жидкостей с газами: текучи, одинаковые свойства во всех направлениях. Сходство с твердыми телами – высокая плотность. Жидкость легко изменяет свою форму, т.е. в ней отсутствуют прочные межмолекулярные взаимодействия. Степень упорядоченности частиц у различных жидкостей различна и изменяется с изменением температуры. При низких температурах она велика, с ростом температуры она падает, приближаясь к свойствам газа.
Твердое состояние характеризуется тем, что энергия взаимодействия его частиц между собой выше кинетической энергии их движения. Твердые вещества могут находиться в аморфном или кристаллическом состояниях.
Аморфное состояние вещества. В этом состоянии вещества не имеют упорядоченной структуры. Некоторые из них очень медленно текут. Наиболее известное из аморфных веществ – стекло. Аморфными являются также многие полимеры, смолы, простые вещества (Se, Si, Ag), оксиды (SiO2, B2O3), сульфаты, карбонаты. Аморфные вещества имеют одинаковые свойства во всех направлениях.
Кристаллическое состояние вещества характеризуется дальним порядком, т.е. трехмерной периодичностью структуры по всему объему твердого тела. Регулярное расположение частиц в твердом теле изображается в виде решетки, в узлах которой находятся частицы, соединенные воображаемыми линиями. Кристаллические вещества плавятся при определенной температуре.
Высокомолекулярные соединения (полимеры) характеризуются молярной массой от нескольких тысяч до нескольких миллионов. В состав молекул полимеров входят тысячи атомов, соединенных химическими связями. Любые атом или группа атомов, входящие в состав цепи полимера, называются составным звеном. Примеры полимеров – целлюлоза, белки, нуклеиновые кислоты, смолы природные, полиэтилен.