- •1Вопрос. Понятие методики судебной экспертизы.
- •2Вопрос. . Понятие метода судебной экспертизы
- •4 Вопрос.
- •6 Вопрос.
- •7 Вопрос.
- •20. Распределение Стьюдента. Коэффициент Стьюдента
- •12. Вопрос.
- •16. Вопрос.
- •10 Вопрос.
- •13. Вопрос.
- •14. Вопрос.
- •15. Вопрос.
- •17. Вопрос. Среднее арифметическое
- •18. Вопрос.
- •19. Вопрос.
- •Понятие и элементы полевой криминалистики.
- •Проведение измерений в условиях пересеченной местности.
- •28.Способы ориентирования на местности и привязка места происшествия к окружающей местности.
- •3.1. Метод Болотова
- •3.2. Привязка по створам
- •3.3. По линейному и боковому ориентиру.
- •27.Фиксация взаиморасположения объектов и следов.
- •30.Природа света.
- •24. Состав наборов технических средств для работы в «полевых» условиях.
- •39. Цвет
- •40. Линзы. Преломление изображения в линзах
- •42. Плоские и сферические зеркала
- •43. Построение изображений в зеркале.
- •45. Проекционные оптические приборы.
- •46. Фотоаппарат
- •47. Глаз как оптическая система. Лупа.
- •48. Микроскоп
- •49. Разрешающая способность и увеличение оптических приборов
- •50. Погрешности оптических приборов
- •51. Различные виды микроскопов, используемые в суд экспертизе
- •52. Оптическая световая микроскопия и ее использование для исследования объектов суд экспертизы
- •54. Электронная микроскопия, ее виды и использование для исследования объектов суд экспертизы
- •55. Понятие электромагнитных волн
- •53. Люминесцентная микроскопия и ее использования для исследования объектов суд экспертизы
- •57. Способы исследования электромагнитных волн различной длины.
- •58. Шкала электромагнитных волн.
- •59. Видимая и невидимая зоны шкалы электромагнитных волн. Свойства электромагнитного излучения в различных областях спектра.
- •60. Ультрафиолетовая, инфракрасная микроскопия и использование ее для исследования объектов судебной экспертизы.
- •61. Дисперсия и цвет тел.
- •62. Понятие спектра. Типы спектров, используемых в судебной экспертизе.
- •63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
- •64. Спектральный состав света различных источников. Спектры и спектральные закономерности.
- •65. Спектральные аппараты.
- •66. Действия света на вещество. Фотоэлектрический эффект.
- •67. Понятие биологических методов.
- •68. Поиск и изъятие следов биологического происхождения на месте происшествия.
- •69. Основы и возможности днк-анализа тканей и выделений человека.
- •70. Молекулярно-генетический идентификационный анализ
- •71. Понятие запаха, пахучих (запаховых) следов. Изъятие запаховых следов, правила упаковки запахоносителей.
- •73. Метод ольфакторного анализа пахучих следов человека с применением собак-детекторов.
- •74. Понятия субъект и объект в исследовании запаховых следов человека с применением собак-детекторов.
- •75. Периодический закон д.И. Менделеева.
- •Основные постулаты н. Бора
- •Понятие вещества, молекулы, атома, химического элемента
- •Строение атома. Понятие ионов. Ионная и ковалентная связи в молекуле
- •Строение молекул. Теория химического строения а.М. Бутлерова
- •Структура вещества. Деление по агрегатному состоянию. Кристаллические и аморфные вещества. Высокомолекулярные соединения
- •Механические свойства
- •Тепловые свойства
- •Электрические свойства
- •Магнитные свойства
- •Растворы, растворители, растворяемые вещества
- •Понятие химических методов исследования, их применение при исследовании объектов судебной экспертизы
- •Методы разделения и концентрирования
- •Классификация методов разделения и концентрирования
- •Методы качественного химического анализа
- •Методы определения количественного состава соединений
- •Основные физические величины
- •Понятие физических методов и их классификация
- •Использование физических методов при экспертном исследовании
- •Понятие физической величины «плотность». Методы определения плотности
- •Понятие физической величины «масса». Методы определения массы
- •99.Классификация фотометрических методов анализа
- •95. Понятие физико-химические методы анализа
- •96. Классификация физико-химйческих методов анализа.
- •98. Классификация электрометрических методов анализа.
- •100.Атомно-абсорбционная спектроскопия и использование атомно-абсорбционной спектроскопии в судебной экспертизе.(применение в суд. Экспертизе не нашла)
- •101. Атомно-эмиссионный спектральный анализ и использование атомно-эмиссионной спектроскопии в судебной экспертизе.
- •102. Рентгеновский анализ, использование рентгеновского анализа в судебной экспертизе.
- •104. Масс-спектрометрические методы анализа.
- •105. Молекулярный спектральный анализ(мса)
- •106. Спектроскопия в уф - и видимой области. Люминесцентный анализ.
- •107. Инфракрасная спектроскопия и спектроскопия комбинационного рассеивания.
- •108. Радиоспектроскопические методы анализа.
- •109.Газовая хромотография
- •110. Жидкостная хроматография и использование ее в судебной экспертизе
- •111. Понятие хроматографии.
- •112. Тонкослойная хроматография
- •113. Понятие сорбции и ее виды.
55. Понятие электромагнитных волн
Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:
Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.
Максвелл высказал гипотезу о существовании и обратного процесса:
Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.
Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.
|
|
Из теории Максвелла вытекает ряд важных выводов:
Существуют электромагнитные волны, т.е. распространяющееся в пространстве и во времени электромагнитное поле.
В природе электрические и магнитные явления выступают как две стороны единого процесса.
Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн, т.е.
- всякое изменение магнитного поля создает в окружающем пространстве вихревое электрическое поле (рис.2а).
- всякое изменение электрического поля возбуждает в окружающем пространстве вихревое магнитное поле, линии индукции которого расположены в плоскости, перпендикулярной линиям напряженности переменного электрического поля, и охватывают их (рис.2б).
Линии индукции возникающего магнитного поля образуют с вектором «правый винт».
Электромагнитные волны поперечны - векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 4).
Рисунок 4 - Поперечные электромагнитные волны
Периодические изменения электрического поля (вектора напряженности Е) порождают изменяющееся магнитное поле (вектор индукции В), которое в свою очередь порождает изменяющееся электрическое поле. Колебания векторов Е и В происходят во взаимно перпендикулярных плоскостях и перпендикулярно линии распространения волны ( вектору скорости) и в любой точке совпадают по фазе. Силовые лини электрического и магнитного полей в электромагнитной волне являются замкнутыми. Такие поля называют вихревыми.
Электромагнитные волны распространяются в веществе с конечной скоростью, и это ещё раз подтвердило справедливость теории близкодействия.
Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.
Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.
Скорость электромагнитных волн в вакууме с=300000 км/с. Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.
Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.
Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 4), ориентированную перпендикулярно направлению распространения волны, то за малое время Дt через площадку протечет энергия ДWэм, равная
ДWэм = (wэ + wм)хSДt.
При переходе из одной среды в другую частота волны не изменяется.
Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.
Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).
Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.
Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало.
