- •1Вопрос. Понятие методики судебной экспертизы.
- •2Вопрос. . Понятие метода судебной экспертизы
- •4 Вопрос.
- •6 Вопрос.
- •7 Вопрос.
- •20. Распределение Стьюдента. Коэффициент Стьюдента
- •12. Вопрос.
- •16. Вопрос.
- •10 Вопрос.
- •13. Вопрос.
- •14. Вопрос.
- •15. Вопрос.
- •17. Вопрос. Среднее арифметическое
- •18. Вопрос.
- •19. Вопрос.
- •Понятие и элементы полевой криминалистики.
- •Проведение измерений в условиях пересеченной местности.
- •28.Способы ориентирования на местности и привязка места происшествия к окружающей местности.
- •3.1. Метод Болотова
- •3.2. Привязка по створам
- •3.3. По линейному и боковому ориентиру.
- •27.Фиксация взаиморасположения объектов и следов.
- •30.Природа света.
- •24. Состав наборов технических средств для работы в «полевых» условиях.
- •39. Цвет
- •40. Линзы. Преломление изображения в линзах
- •42. Плоские и сферические зеркала
- •43. Построение изображений в зеркале.
- •45. Проекционные оптические приборы.
- •46. Фотоаппарат
- •47. Глаз как оптическая система. Лупа.
- •48. Микроскоп
- •49. Разрешающая способность и увеличение оптических приборов
- •50. Погрешности оптических приборов
- •51. Различные виды микроскопов, используемые в суд экспертизе
- •52. Оптическая световая микроскопия и ее использование для исследования объектов суд экспертизы
- •54. Электронная микроскопия, ее виды и использование для исследования объектов суд экспертизы
- •55. Понятие электромагнитных волн
- •53. Люминесцентная микроскопия и ее использования для исследования объектов суд экспертизы
- •57. Способы исследования электромагнитных волн различной длины.
- •58. Шкала электромагнитных волн.
- •59. Видимая и невидимая зоны шкалы электромагнитных волн. Свойства электромагнитного излучения в различных областях спектра.
- •60. Ультрафиолетовая, инфракрасная микроскопия и использование ее для исследования объектов судебной экспертизы.
- •61. Дисперсия и цвет тел.
- •62. Понятие спектра. Типы спектров, используемых в судебной экспертизе.
- •63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
- •64. Спектральный состав света различных источников. Спектры и спектральные закономерности.
- •65. Спектральные аппараты.
- •66. Действия света на вещество. Фотоэлектрический эффект.
- •67. Понятие биологических методов.
- •68. Поиск и изъятие следов биологического происхождения на месте происшествия.
- •69. Основы и возможности днк-анализа тканей и выделений человека.
- •70. Молекулярно-генетический идентификационный анализ
- •71. Понятие запаха, пахучих (запаховых) следов. Изъятие запаховых следов, правила упаковки запахоносителей.
- •73. Метод ольфакторного анализа пахучих следов человека с применением собак-детекторов.
- •74. Понятия субъект и объект в исследовании запаховых следов человека с применением собак-детекторов.
- •75. Периодический закон д.И. Менделеева.
- •Основные постулаты н. Бора
- •Понятие вещества, молекулы, атома, химического элемента
- •Строение атома. Понятие ионов. Ионная и ковалентная связи в молекуле
- •Строение молекул. Теория химического строения а.М. Бутлерова
- •Структура вещества. Деление по агрегатному состоянию. Кристаллические и аморфные вещества. Высокомолекулярные соединения
- •Механические свойства
- •Тепловые свойства
- •Электрические свойства
- •Магнитные свойства
- •Растворы, растворители, растворяемые вещества
- •Понятие химических методов исследования, их применение при исследовании объектов судебной экспертизы
- •Методы разделения и концентрирования
- •Классификация методов разделения и концентрирования
- •Методы качественного химического анализа
- •Методы определения количественного состава соединений
- •Основные физические величины
- •Понятие физических методов и их классификация
- •Использование физических методов при экспертном исследовании
- •Понятие физической величины «плотность». Методы определения плотности
- •Понятие физической величины «масса». Методы определения массы
- •99.Классификация фотометрических методов анализа
- •95. Понятие физико-химические методы анализа
- •96. Классификация физико-химйческих методов анализа.
- •98. Классификация электрометрических методов анализа.
- •100.Атомно-абсорбционная спектроскопия и использование атомно-абсорбционной спектроскопии в судебной экспертизе.(применение в суд. Экспертизе не нашла)
- •101. Атомно-эмиссионный спектральный анализ и использование атомно-эмиссионной спектроскопии в судебной экспертизе.
- •102. Рентгеновский анализ, использование рентгеновского анализа в судебной экспертизе.
- •104. Масс-спектрометрические методы анализа.
- •105. Молекулярный спектральный анализ(мса)
- •106. Спектроскопия в уф - и видимой области. Люминесцентный анализ.
- •107. Инфракрасная спектроскопия и спектроскопия комбинационного рассеивания.
- •108. Радиоспектроскопические методы анализа.
- •109.Газовая хромотография
- •110. Жидкостная хроматография и использование ее в судебной экспертизе
- •111. Понятие хроматографии.
- •112. Тонкослойная хроматография
- •113. Понятие сорбции и ее виды.
50. Погрешности оптических приборов
Рассматривая прохождение света через тонкие линзы, мы ограничивались параксиальными лучами. Показатель преломления материала линзы считали не зависящим от длины волны падающего света, а падающий свет — монохроматическим. Так как в реальных оптических системах эти условия не выполняются, то в них возникают искажения изображения, называемые аберрация» (или погрешностями).
1. Сферическая аберрация. Если расходящийся пучок света падает на линзу, то параксиальные лучи после преломления пересекаются в точке S' (на расстоянии OS' от оптического центра линзы), а лучи, более удаленные от оптической оси, — в точке S", ближе к линзе (рис. 238). В результате изображение светящейся точки на экране, перпендикулярном оптической оси, будет в виде расплывчатого пятна. Этот вид погрешности, связанный со сферичностью преломляющих поверхностей, называется сферической аберрацией. Количественной мерой сферической аберрации является отрезок = OS'' – OS'. Применяя диафрагмы (ограничиваясь параксиальными лучами), можно сферическую аберрацию уменьшить, однако при этом уменьшается светосила линзы. Сферическую аберрацию можно практически устранить, составляя системы из собирающих ( <0) и рассеивающих ( >0) линз. Сферическая аберрация является частным случаем астигматизма.
2. Кома. Если через оптическую систему проходит широкий пучок от светящейся точки, расположенной не на оптической оси, то получаемое изображение этой точки будет в виде освещенного пятнышка, напоминающего кометный хвост. Такая погрешность называется поэтому комой. Устранение комы производится теми же приемами, что и сферической аберрации.
3. Дисторсия. Погрешность, при которой при больших углах падения лучей на линзу линейное увеличение для точек предмета, находящихся на разных расстояниях от главной оптической оси, несколько различается, называется дисторсией. В результате нарушается геометрическое подобие между предметом (прямоугольная сетка, рис. 239, а) и его изображением (рис. 239, б — подушкообразная дисторсия, рис. 239, в — бочкообразная дисторсия). Дисторсия особенно опасна в тех случаях, когда оптические системы применяются для съемок, например при аэрофотосъемке, в микроскопии и т.д. Дисторсию исправляют соответствующим подбором составляющих частей оптической системы.
4. Хроматическая аберрация. До сих пор мы предполагали, что коэффициенты преломления оптической системы постоянны. Однако это утверждение справедливо лишь для освещения оптической системы монохроматическим светом ( = const); при сложном составе света необходимо учитывать зависимость коэффициента преломления вещества линзы (и окружающей среды, если это не воздух) от длины волны (явление дисперсии). При падении на оптическую систему белого света отдельные составляющие его монохроматические лучи фокусируются в разных точках (наибольшее фокусное расстояние имеют красные лучи, наименьшее — фиолетовые), поэтому изображение размыто и по краям окрашено. Это явление называется хроматической аберрацией. Так как разные сорта стекол обладают различной дисперсией, то, комбинируя собирающие и рассеивающие линзы из различных стекол, можно совместить фокусы двух (ахроматы) и трех (апохроматы) различных цветов, устранив тем самым хроматическую аберрацию. Системы, исправленные на сферическую и хроматическую аберрации, называются апланатами.
5. Астигматизм. Погрешность, обусловленная неодинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка, называется астигматизмом. Так, изображение точки, удаленной от главной оптической оси, наблюдается на экране в виде расплывчатого пятна эллиптической формы. Это пятно в зависимости от расстояния экрана до оптического центра линзы вырождается либо в вертикальную, либо в горизонтальную прямую. Астигматизм исправляется подбором радиусов кривизны преломляющих поверхностей и их фокусных расстояний. Системы, исправленные на сферическую и хроматическую аберрации и астигматизм, называются анастигматами.
Устранение аберраций возможно лишь подбором специально рассчитанных сложных оптических систем. Одновременное исправление всех погрешностей —задача крайне сложная, а иногда даже неразрешимая. Поэтому обычно устраняются полностью лишь те погрешности, которые в том или ином случае особенно вредны.
