Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция№10.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.08 Mб
Скачать

Плохотников К.Э. ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ. Теория и практика в среде MATLAB

Лекция №10 Уравнение переноса Линейное уравнение переноса

Задачи описания переноса частиц в веществе весьма разнообразны: это перенос электронов, протонов и нейтронов, перенос гамма излучения, диффузия одного вещества в другом, конвективный перенос в жидкости и в газе и прочие задачи. Задачи подобного типа могут быть сведены к решению нелинейных интегро-дифференциальных уравнений. Например, кинетическая теория газов базируется на уравнении Больцмана, которое имеет следующий вид:

(1)

где — функция распределения газа атомов, скорости пары атомов до и после взаимодействия с дифференциальным сечением (d = 2 sin d — телесный угол, где — угол отклонения при взаимодействии пары атомов) удовлетворяют законам сохранения импульса и энергии:

Решение уравнения Больцмана (1) крайне сложно и выходит за пределы данного курса лекций. Ограничимся решением линейного дифференциального уравнения вида:

, (2)

где c — вектор скорости переноса. Многомерность уравнения переноса (2) не вносит ничего принципиально нового, поэтому в дальнейшем будем исследовать одномерное уравнение переноса с постоянной, если не оговорено противное, скоростью c:

. (3)

Если правая часть уравнения (3) равна нулю, уравнение можно решить в общем виде, тогда решение выступает в форме бегущей волны

, (4)

где = () — произвольная функция. Согласно (4) видно, что параметр c выступает в качестве скорости переноса, причем при c > 0 волна двигается слева направо. Учитывая (4), определим типичные корректные постановки задачи решения уравнения переноса (3).

Смешанная задача Коши. Зададим начальные и граничные условия вида:

(5)

Решение задачи (3), (5) однозначно определено в области G(t,x) = [0,T]  [0,a], если начальное и граничное условия непрерывны вместе со своими p-и производными, при этом выполнены условия согласования в точке стыка начальных и граничных условий. Для случая f(t,x) = 0 условия стыковки имеют вид:

,

которое следует из точного решения задачи (3), (5):

(6)

Для случая, когда f(t,x) непрерывна вместе с (p1)-й производной, то решение u(t,x) непрерывно в G вместе с p-й производной.

Задача Коши. Определим начальные данные на полубесконечной прямой: , x  (,a]. В этом случае решение однозначно определено в области G(t,x) = [0,+)  (,a]. Гладкость решения соответствует гладкости начального данного и правой части f(t,x).

Характеристики уравнения (3) имеют вид xct = const и являются прямыми линиями при c = const. Решение (4) однородного уравнения (3) постоянно вдоль характеристики, поэтому говорят, что начальные и граничные условия переносятся вдоль характеристик. На рис.1 приведена иллюстрация такого переноса на примере решения (6). Точка стыка начального и граничного условий развернутая во времени является характеристикой, которая представлена на рис.1 красной стрелкой.

Рис.1. Перенос начального и граничного условия уравнения переноса по характеристикам

Рассмотрим разностные схемы решения смешанной задачи Коши. Они называются схемами бегущего счета. Схемы бегущего счета легко обобщаются на многомерный случай, они просты и позволяют решать уравнения переноса с различного рода усложнениями.

Для решения задачи (3), (5) в области G(t,x) = [0,T]  [0,a] введем равномерную для простоты сетку с шагами и h по времени и пространству соответственно. Рассмотрим четыре расчетных шаблона, представленных на рис.2.

Рис.2,а. Трехточечный шаблон

Рис.2,б. Трехточечный шаблон

Рис.2,в. Трехточечный шаблон

Рис.2,г. Четырехточечный шаблон

Составим разностные схемы ко всем четырем шаблонам на рис.2.

(7а)

, (7б)

, (7в)

. (7г)

Во всех четырех схемах правая часть выбиралась в центре ячейки. Возможен и другой способ аппроксимации правой части.

Все четыре разностные схемы (7а) — (7г), по существу, являются явными. Во всех схемах значение явно выражается через . Решение на нулевом слое известно из начального условия, т.е. . Для вычисления решения на следующем слое из граничного условия находим , это позволяет найти , далее вычисляется и т.д. Таким образом находится решение на первом слое, аналогично находится решение на втором слое и т.д. Именно в связи с тем, что решение вычисляется слой за слоем слева направо, схемы (7а) — (7г) называются схемами бегущего счета.

Алгоритмы бегущего счета обеспечивают существование и единственность решений при любых . Поэтому для доказательства сходимости остается разобраться с аппроксимацией и устойчивостью разностных схем. Поскольку граничное условие воспроизводится точно, постольку исследование устойчивости по нему не требуется.

Разностная схема (7а). Исследуем погрешность аппроксимации схемы (7а). Для этого разложим решение и правую часть в окрестности точки (tm,xn) в ряд Тейлора, считая непрерывность всех требуемых производных:

,

,

.

Учитывая эти разложения, находим невязку схемы (7а):

т.е. схема (7а) имеет аппроксимацию первого порядка в норме .

Устойчивость исследуем с помощью принципа максимума, формулировка и доказательство которого приведены в лекции №9. Критерий равномерной устойчивости по начальным данным (формула (64) в лекции №9 при C = 0) дает следующее ограничение:

,

которое сводится к так называемому условию Куранта

ch. (8)

Согласно (8), разностная схема (7а) является условно устойчивой в норме .

Методом разделения переменных можно доказать необходимость условия (8) для обеспечения устойчивости. Подставим в схему (7а) следующие величины:

,

тогда множитель роста гармоники

.

Условие устойчивости обеспечивается, когда

. (9)

Выполнение неравенства (9) при произвольном q обеспечено, когда r  1, т.е. при выполнении условия Куранта. При нарушении условия Куранта, т.е. при r > 1 неравенство (9) не выполняется при всех q, а только при некоторых. Так, при r >> 1 неравенство (9) перепишется в виде: cos qh  ½, т.е. амплитуды некоторых гармоник растут при переходе со слоя на слой и схема неустойчива по начальным данным.

Устойчивость по правой части согласно формуле (65) лекции №9 обеспечивается при = 1 в норме , когда верно условие Куранта.

В итоге схема (7а) при выполнении условия Куранта сходится в с первым порядком точности.

В качестве примера рассмотрим численное решение задачи

(10)

Задача (10) имеет следующее аналитическое решение:

(11)

На листинге_№1 приведен код программы численного решения задачи (10) по разностной схеме (7а). На рис.3,а приведено трехмерное изображение решения u(t,x) при выполнении условия Куранта, а на рис.3,б приведено решение при нарушении условия Куранта. Видно, появление неустойчивости в решении при нарушении условия (8).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]