
- •Содержание
- •Общие сведения о процессах горения
- •1.1. Основные понятия физики горения и взрыва
- •1.2. История развития знаний о горении
- •Основные области применения горения
- •Горение и окисление
- •1.5. Условия, необходимые для горения
- •Продукты горения
- •Углекислый газ
- •Оксид углерода
- •Сернистый газ
- •2. Воспламенение
- •2.1. Основные понятия химической кинетики
- •2.2. Тепловая теория самовоспламенения
- •2.3. Область самовоспламенения
- •2.4. Период индукции
- •2.5. Температура самовоспламенения газов и жидкостей
- •2.6. Температура самовоспламенения твердых тел
- •2.7. Математическая теория теплового взрыва
- •Адиабатический тепловой взрыв
- •Тепловой взрыв в неадиабатических условиях
- •3. Распространение пламени в газовых смесях
- •3.1. Скорость распространения пламени
- •Метод определения скорости распространения пламени с использованием мыльного пузыря
- •Метод определения скорости распространения пламени в трубке
- •3.3. Физика процесса распространения пламени
- •3.4. Влияние диаметра трубки на скорость распространения пламени
- •3.5. Детонация в газовых смесях
- •Возникновение ударной волны
- •Возникновение детонации
- •4. Материальный баланс процессов горения
- •4.1. Состав атмосферного воздуха
- •4.2. Составление уравнения горения
- •4.3. Расчет количества воздуха, необходимого для горения
- •Горючее вещество – определенное химическое соединение
- •Горючее вещество – смесь газов
- •Горючее вещество – смесь сложных химических соединений
- •4.4. Расчет количества и состава продуктов горения
- •Горючее вещество – определенное химическое соединение
- •Горючее вещество – смесь газов
- •Горючее вещество – смесь сложных химических соединений
- •5.Тепловой баланс горения
- •5.1. Теплота горения
- •Связь между теплотой горения и теплотворной способностью топлива
- •Формула Менделеева
- •Теоретическая температура горения
- •Расчет теоретической температуры горения
- •6. Взрывчатые вещества
- •6.1. Классификация взрывов
- •6.2. Характеристики взрывчатых веществ
- •6.3. Классификация взрывчатых веществ
- •Инициирующие взрывчатые вещества
- •Бризантные взрывчатые вещества
- •Пиротехнические составы
- •6.4. Обращение с взрывчатыми веществами
- •7. Воздействие взрыва на окружающую среду
- •7.1. Оценка фугасности взрывчатого вещества
- •Расчетные методы оценки фугасности взрывчатого вещества
- •Экспериментальные методы оценки фугасности взрывчатого вещества
- •Метод свинцовой бомбы
- •Метод эквивалентных зарядов
- •Метод баллистического маятника
- •М етод баллистической мортиры
- •Параметры ударных волн
- •7.2. Оценка бризантности взрывчатого вещества
- •Теоретическая оценка бризантности
- •Экспериментальное определение бризантности взрывчатого вещества
- •7.3. Расчет характеристик взрыва
- •8.Взрывы газовых смесей
- •8.1. Взрывчатые смеси
- •8.2. Концентрационные пределы взрыва
- •8.3. Экспериментальное определение концентрационных пределов взрыва
- •8.4. Расчетное определение концентрационных пределов взрыва
- •8.5. Расчет температуры и давления взрыва
- •9. Горение и взрыв пылевых смесей
- •9.1. Химическая активность пыли
- •9.2. Температура самовоспламенения пыли
- •9.3. Распространение горения в пылевых смесях
- •9.4. Пределы взрыва
- •9.5. Давление при взрыве пыли
- •9.6. Факторы, влияющие на взрыв пыли
- •Источник воспламенения
- •Влажность пыли и воздуха
- •Дисперсность пыли
- •Температура пылевоздушной смеси
- •10. Ядерные взрывы
- •10.1. Ядерные боеприпасы Виды ядерных зарядов
- •Конструкция и способы доставки ядерных боеприпасов
- •Мощность ядерных боеприпасов
- •Виды ядерных взрывов
- •10.2. Поражающие факторы ядерного взрыва
- •Литература
2.3. Область самовоспламенения
Величина температуры самовоспламенения Т* сильно зависит от давления реагирующих газов. На рис. 2.3 приведены границы области самовоспламенения типичных углеводородов (смеси горючих газов и паров с воздухом) в зависимости от давления среды.
Для смесей, параметры которых – давление р и температура Т – лежат выше кривой ABCDEF, произойдет самовоспламенение. Если параметры смеси р, Т лежат ниже кривой ABCDEF, то самовоспламенение не происходит. Рассмотрим изменение температуры самовоспламенения Т* углеводородных смесей при повышении и понижении давления. При повышении давления смеси выше атмосферного (р > 0.1 МПа) величина Т* резко снижается, особенно при р > 0,2 МПа (участок DЕ). При р > 0,3 МПа величина температуры самовоспламенения становится постоянной, то есть Т* = const (участок ЕF). При давлениях ниже атмосферного величина температуры самовоспламенения Т* сначала резко повышается, достигая максимума (точка С), а затем снижается, образуя полуостров АВС.
Рис. 2.3. Область самовоспламенения углеводородов
в зависимости от давления смеси
Кроме параметров окружающей среды, то есть давления и температуры, величина Т* зависит от состава горючей смеси. На рис. 2.4 приведена зависимость температуры самовоспламенения Т* от процентного содержания метана (СН4) в воздухе. Как видно из графика, наиболее низкое значение Т* соответствует смеси, содержащей 6% метана в воздухе, а наиболее высокое значение Т* – смеси, содержащей 14% метана (верхний предел взрыва). Отметим, что зависимость Т* от состава смеси всегда имеет минимум, приведенный на рис. 2.4. При этом наименьшей температурой самовоспламенения из смесей горючих паров и газов с воздухом обладает смесь, близкая к стехиометрической.
Рис. 2.4. Зависимость Т* от содержания метана в воздухе
2.4. Период индукции
Горючее вещество, введенное в нагретый сосуд, воспламеняется не сразу, а через некоторый промежуток времени. Время с момента ввода горючего вещества в нагретый сосуд до его самовоспламенения называется периодом индукции t*. Величина периода индукции t* зависит от состава горючей смеси, а также изменяется в зависимости от количества вещества, давления, температуры сосуда, его размеров и других факторов. На рис. 2.5 приведена зависимость t* от давления для смеси диметилового эфира (СН3ОСН3) с кислородом при температуре в сосуде Т = 2450С. Как следует из графика, с ростом давления период индукции резко уменьшается.
На рис. 2.6 приведена зависимость периода индукции t* смеси метана (СН4) с кислородом от давления для разных значений температуры сосуда. Как видно из приведенного графика, период индукции также резко уменьшается с увеличением давления. Для одинаковых значений давления смеси, например, для р = р0 (рис. 2.6), величина периода индукции t* тем больше, чем ниже температура сосуда.
Кроме термодинамических параметров среды – температуры и давления, величина t* зависит и от состава газовой смеси. В табл. 2.1 приведены данные по t* для метано-воздушной смеси с разным содержанием метана. Как следует из приведенных данных, с увеличением содержания горючего газа в смеси, период индукции возрастает.
Период индукции играет большую роль не только для смесей горючих газов с воздухом, но также для пылевоздушных смесей и твердых топлив. Этот параметр имеет практическое значение при оценке пожарной безопасности некоторых производств. Отметим, в частности, лакокрасочные цехи, крупные гаражи, шахты, рудники, элеваторы и т.д., в которых находятся испаряющиеся и легковоспламеняющиеся жидкости (лак, бензин) или аэрозоли.
Рис. 2.5. Влияние давления на величину периода индукции
смеси (СН3ОСН3 + О2) при Т = 2450С
Рис. 2.6. Влияние температуры на величину периода индукции
смеси (СН4 + О2): 1 – Т = 7300С; 2 – Т = 7500С; 3 – Т = 7800С; 4 – Т = 8000С
Таблица 2.1
Значения периода индукции (t*, с) в зависимости
от температуры и состава метано-воздушной смеси
Содержание СН4 в смеси, % |
t* при 7750С |
t* при 8250С |
t* при 8750С |
6 |
1.08 |
0.58 |
0.35 |
7 |
1.15 |
0.60 |
0.36 |
8 |
1.23 |
0.62 |
0.37 |
9 |
1.30 |
0.65 |
0.39 |
10 |
1.40 |
0.68 |
0.41 |
12 |
1.64 |
0.74 |
0.44 |