
- •Содержание
- •Общие сведения о процессах горения
- •1.1. Основные понятия физики горения и взрыва
- •1.2. История развития знаний о горении
- •Основные области применения горения
- •Горение и окисление
- •1.5. Условия, необходимые для горения
- •Продукты горения
- •Углекислый газ
- •Оксид углерода
- •Сернистый газ
- •2. Воспламенение
- •2.1. Основные понятия химической кинетики
- •2.2. Тепловая теория самовоспламенения
- •2.3. Область самовоспламенения
- •2.4. Период индукции
- •2.5. Температура самовоспламенения газов и жидкостей
- •2.6. Температура самовоспламенения твердых тел
- •2.7. Математическая теория теплового взрыва
- •Адиабатический тепловой взрыв
- •Тепловой взрыв в неадиабатических условиях
- •3. Распространение пламени в газовых смесях
- •3.1. Скорость распространения пламени
- •Метод определения скорости распространения пламени с использованием мыльного пузыря
- •Метод определения скорости распространения пламени в трубке
- •3.3. Физика процесса распространения пламени
- •3.4. Влияние диаметра трубки на скорость распространения пламени
- •3.5. Детонация в газовых смесях
- •Возникновение ударной волны
- •Возникновение детонации
- •4. Материальный баланс процессов горения
- •4.1. Состав атмосферного воздуха
- •4.2. Составление уравнения горения
- •4.3. Расчет количества воздуха, необходимого для горения
- •Горючее вещество – определенное химическое соединение
- •Горючее вещество – смесь газов
- •Горючее вещество – смесь сложных химических соединений
- •4.4. Расчет количества и состава продуктов горения
- •Горючее вещество – определенное химическое соединение
- •Горючее вещество – смесь газов
- •Горючее вещество – смесь сложных химических соединений
- •5.Тепловой баланс горения
- •5.1. Теплота горения
- •Связь между теплотой горения и теплотворной способностью топлива
- •Формула Менделеева
- •Теоретическая температура горения
- •Расчет теоретической температуры горения
- •6. Взрывчатые вещества
- •6.1. Классификация взрывов
- •6.2. Характеристики взрывчатых веществ
- •6.3. Классификация взрывчатых веществ
- •Инициирующие взрывчатые вещества
- •Бризантные взрывчатые вещества
- •Пиротехнические составы
- •6.4. Обращение с взрывчатыми веществами
- •7. Воздействие взрыва на окружающую среду
- •7.1. Оценка фугасности взрывчатого вещества
- •Расчетные методы оценки фугасности взрывчатого вещества
- •Экспериментальные методы оценки фугасности взрывчатого вещества
- •Метод свинцовой бомбы
- •Метод эквивалентных зарядов
- •Метод баллистического маятника
- •М етод баллистической мортиры
- •Параметры ударных волн
- •7.2. Оценка бризантности взрывчатого вещества
- •Теоретическая оценка бризантности
- •Экспериментальное определение бризантности взрывчатого вещества
- •7.3. Расчет характеристик взрыва
- •8.Взрывы газовых смесей
- •8.1. Взрывчатые смеси
- •8.2. Концентрационные пределы взрыва
- •8.3. Экспериментальное определение концентрационных пределов взрыва
- •8.4. Расчетное определение концентрационных пределов взрыва
- •8.5. Расчет температуры и давления взрыва
- •9. Горение и взрыв пылевых смесей
- •9.1. Химическая активность пыли
- •9.2. Температура самовоспламенения пыли
- •9.3. Распространение горения в пылевых смесях
- •9.4. Пределы взрыва
- •9.5. Давление при взрыве пыли
- •9.6. Факторы, влияющие на взрыв пыли
- •Источник воспламенения
- •Влажность пыли и воздуха
- •Дисперсность пыли
- •Температура пылевоздушной смеси
- •10. Ядерные взрывы
- •10.1. Ядерные боеприпасы Виды ядерных зарядов
- •Конструкция и способы доставки ядерных боеприпасов
- •Мощность ядерных боеприпасов
- •Виды ядерных взрывов
- •10.2. Поражающие факторы ядерного взрыва
- •Литература
9.1. Химическая активность пыли
Химическая реакция между газом и твердым веществом – гетерогенная реакция – протекает на поверхности твердых частиц. Скорость такой реакции зависит от величины поверхности соприкасающихся реагирующих веществ. При измельчении вещества в пыль, резко увеличивается его удельная поверхность и, соответственно, скорость горения. Например, один килограмм угля сгорает в течение пяти минут, а один килограмм угольной пыли – в течение одной секунды.
Многие металлы, например алюминий, магний, цинк в компактном состоянии не способны гореть; находясь же в воздухе в виде пыли они горят со скоростью взрыва. Порошки железа и свинца могут самовозгореться при распыливании в воздухе. Алюминиевая пудра обладает способностью самовозгораться в состоянии аэрогеля.
Кроме изменения химической активности твердого тела в процессе его измельчения изменяется также его абсорбционная способность. Объем абсорбированного газа всегда превышает объем абсорбировавшей его пыли. Например, 1 м3 пылеугольной газовзвеси может содержать 0.9 м3 абсорбированного воздуха, и только 0.05 м3 сажевых частиц. При этом объем абсорбированного воздуха в 19 раз больше объема абсорбировавшей его смеси. Наличие на поверхности пыли абсорбированного кислорода содействует окислительным процессам при повышенных температурах и ускоряет подготовку пыли к горению. Объем кислорода, абсорбированного пылью, недостаточен для ее полного сгорания, но обеспечивает протекание начальных процессов окисления.
9.2. Температура самовоспламенения пыли
Любая пыль в зависимости от ее состояния имеет две температуры самовоспламенения: Т*аз – для аэрозоля и Т*аг – для аэрогеля. При этом аэрозоль имеет температуру самовоспламенения значительно более высокую, чем аэрогель
Т*аз>>Т*аг .
Таким образом, аэрогель воспламеняется при нагревании быстрее, чем аэрозоль. Аэрогель представляет собой скопление осевших из воздуха твердых частиц горючего вещества на подстилающей поверхности, например, на стенах и потолке здания, на трубопроводах и других поверхностях. Более низкая, по сравнению с аэрозолем, температура самовоспламенения аэрогеля объясняется наличием благоприятных условий протекания реакции окисления (более низкие тепловые потери из зоны горения). При переходе аэрогеля в аэрозоль расстояние между частицами увеличивается, что приводит к повышению тепловых потерь в процессе окисления. Это ведет к повышению температуры самовоспламенения.
Температура самовоспламенения зависит от дисперсности аэрозольных частиц. Чем меньше размер частиц, тем ниже его температура самовоспламенения. Например, мелкодисперсная древесная мука имеет значение Т*аг=2770С, а для крупнодисперсных древесных опилок величина Т*аг=3500С. Значения температуры самовоспламенения некоторых аэрозолей приведены в табл. 9.1.
Таблица 9.1
Температура самовоспламенения некоторых аэрозолей
-
Аэрозоль
Т*аз, 0С
Сахар
500
Древесная мука
610
Какао
620
Пшеничная мука
620
Крахмал
630
Чай
640
Табак
680
Алюминиевая пудра
925
Таким образом, для всех практически встречающихся пылей величина Т*аз лежит в диапазоне (500÷900)0С, что примерно в 1.7÷2.2 раза выше диапазона температур самовоспламенения аэрогелей.