Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕОРІЯ Г і В російська версія.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
3.46 Mб
Скачать

Теоретическая оценка бризантности

Известно несколько способов теоретической оценки бризантности, основанных на ряде физических предпосылок. Рассмотрим два способа расчета бризантности взрывчатого вещества.

В первом способе в качестве меры бризантности принимается величина скачка давления на фронте волны детонации:

,

где ро, ρо – давление и плотность невозмущенного воздуха;

u – скорость разлета продуктов детонации.

Во втором способе в качестве меры бризантности используется величина импульсивной силы. В предположении, что при встрече с преградой, вследствие движения продуктов детонации к стенке, они будут уплотняться, а давление возрастать, Рюденберг предложил характеризовать бризантность величиной импульсивной силы

, (7.13)

где ρu2-динамический напор продуктов детонации в зоне детонационной волны.

Для сильной детонационной волны ( ) выполняются следующие соотношения:

,

(7.14)

,

где – показатель адиабаты продуктов детонации.

Подставляя (7.14) в (7.12), получим следующее выражение для расчета импульсивной с илы:

Результаты экспериментов показали, что показатель адиабаты продуктов детонации k = 3; при этом формула для расчета импульсивной силы примет вид:

.

Указанные формулы являются приближенными и могут использоваться только для грубых оценок бризантности взрывчатого вещества.

Экспериментальное определение бризантности взрывчатого вещества

При экспериментальном определении бризантности взрывчатого вещества используются различные методы. Рассмотрим наиболее распространенные методы – обжатие свинцовых столбиков и обжатие медных крешеров.

Обжатие свинцовых столбиков

Метод обжатия свинцовых столбиков был предложен Гессом в 1876г. и является наиболее распространенным и простым методом испытания взрывчатых веществ на бризантность (рис. 7.6). Для испытаний применяется свинцовый столбик 2 диаметром 40 мм и высотой 60 мм, который вертикально установлен на массивной стальной плите 1. На столбик помещают стальную пластину диаметром 41 мм и высотой 10 мм, на которой установлен заряд взрывчатого вещества диаметром 40 мм, массой 50 г в бумажной оболочке. Заряд снабжен капсюлем-детонатором 5. При взрыве вещества столбик деформируется. Мерой бризантности является величина

,

где – величина обжатия;

h0, hk – начальная и конечная высота столбика.

Функция учитывает увеличение сопротивления столбика по мере его обжатия. В табл. 7.4 приведены величины h и , характеризующие бризантность, для некоторых взрывчатых веществ.

Таблица 7.4

Значения бризантности для различных взрывчатых веществ

при плотности 1 г/см3

Взрывчатое

вещество

Аммонит 6ЖВ

Тротил

Детонит М

Аммонит скальный

h, мм

14

16

17

18

0.305

0.364

0.396

0.430

С увеличением плотности заряда (при той же массе), величина h линейно возрастает. Величина обжатия столбика зависит от скорости детонации для данного вещества, которая возрастает с измельчением компонентов и увеличением их гомогенности.

Рис. 7.6. Проба Гесса: 1-стальная плита, 2-свинцовый столбик, 3-заряд взрывчатого вещества, 4-стальные пластины, 5-детонатор

Обжатие медных крешеров

Данный метод предложен Кастом в 1893г. Схема бризантометра Каста приведена на рис. 7.7. На стальное основание 1 установлен полый стальной цилиндр 2 с притертым стальным поршнем 3 массой 680 г. На поршне имеется стальная накладка 4 толщиной 20 мм и массой 320 г, покрытая для защиты от непосредственного действия продуктов взрыва свинцовым диском 5 толщиной 4 мм. Заряд взрывчатого вещества 7 диаметром 20 мм и высотой 70 мм снабжен капсюлем-детонатором 8. Под поршнем установлен медный крешер 6 диаметром 7 мм и высотой 10,5 мм.

При подрыве заряда поршень получает динамический удар и обжимает крешер. При этом его высота уменьшается на величину . Величина обжатия h служит мерой бризантности исследуемого взрывчатого вещества. Результаты испытаний для некоторых веществ приведены в табл. 7.5.

Таблица 7.5

Результаты исследования бризантности методом обжатия медных крешеров

Взрывчатое вещество

Пироксилин

Тротил

Динамит

Нитроглицерин

h, мм

3.0

3.6

3.9

4.6

Сравнение результатов пробы Гесса и метода обжатия медных крешеров показали их идентичность (разброс результатов не превышает 2-4%).

Рис. 7.7. Проба Каста:

1-стальное основание, 2-цилиндр,3-поршень, 4-стальная накладка, 5-свинцовый диск, 6-крешер,7-заряд взрывчатого вещества, 8-детонатор

Следует отметить, что по отдельности бризантные или фугасные формы работы взрыва на практике встречаются редко. В большинстве случаев работа взрыва носит комбинированный характер – фугасно-бризантный. При этом реальное время совершения работы взрыва, то есть время отбора энергии от продуктов взрыва, при комбинированном воздействии, больше, чем при его бризантном действии (10-6÷10-5с), но меньше, чем при фугасном действии взрыва (10-4÷10-3с).