
- •Содержание
- •Тема 1. Основные понятия теплообмена 7
- •Тема 2. Теплопроводность 14
- •Тема 7. Теплообмен при фазовых превращениях 64
- •Тема 8. Теплообмен излучением 81
- •Тема 9. Основы теории массообмеНа 102
- •Введение
- •Тема 1. Основные понятия теплообмена
- •1.1 Температурное поле. Изотермическая поверхность.
- •1.2. Градиент температуры
- •1.3. Количество теплоты. Тепловой поток.Удельные тепловые потоки
- •1.4.Элементарные способы передачи теплоты (виды процессов теплообмена)
- •1.5. Сложный теплообмен. Теплоотдача и теплопередача
- •Тема 2. Теплопроводность
- •2.1. Основной закон теории теплопроводности. Закон (гипотеза) Фурье.
- •2.2. Энергетическая форма записи закона Фурье. Коэффициент температуропроводности
- •2.3. Дифференциальное уравнение теплопроводности (дифференциальное уравнение Фурье)
- •2.4. Условия однозначности, необходимые для решения уравнения Фурье
- •2.5. Начальные условия (ну)
- •2.6. Граничные условия (гу)
- •2.7. Методы решения краевой задачи в теории теплопроводности
- •Тема 3. Нестационарная теплопроводность в телах простейшей формы
- •3.1. Математическая формулировка задачи
- •Тема 4. Стационарная теплопроводность
- •4.1 Стационарная теплопроводность в плоской и цилиндрической стенках
- •Тема 5. Теплопередача
- •5.1. Теплопередача через плоскую стенку
- •5.2. Теплопередача через цилиндрическую стенку
- •5.3. Алгоритм расчета теплопередачи через непроницаемые стенки
- •5.4. Единая формула теплопередачи через стенки классической формы
- •5.5. Интенсификация теплопередачи
- •5.6.Тепловая изоляция
- •Тема 6. Конвективный теплообмен в однофазных средах
- •6.1. Основные понятия и определения
- •6.2. Дифференциальные уравнения конвективного теплообмена
- •6.3. Основные положения теории подобия
- •6.4. Основные критериальные уравнения
- •6.4.1. Конвективная теплоотдача при свободном движении текучей среды
- •6.4.2. Конвективная теплоотдача при вынужденном движении текучей среды в трубах и каналах
- •6.4.3. Конвективная теплоотдача при вынужденном внешнем обтекании тел
- •6.5. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
- •Тема 7. Теплообмен при фазовых превращениях
- •7.1. Теплоотдача при конденсации паров
- •7.2. Теплоотдача при кипении жидкостей
- •Тема 8. Теплообмен излучением
- •8.1. Основные понятия и определения
- •8.2. Тепловое излучение твердых тел
- •8.3. Основные законы излучения абсолютно черного тела (ачт)
- •8.4. Излучение реальных тел. Закон Кирхгофа.
- •8.4. Особенности излучения газов
- •8.5. Расчет результирующего лучистого потока тепла между телами. Экраны
- •Тема 9. Основы теории массообмеНа
- •9.1. Диффузионный пограничный слой
- •9.2. Массопроводность, массоотдача, массопередача
- •9.3 Критериальные уравнения массоотдачи
- •10. Теплообменные аппараты
- •10.1 Общие сведения о теплообменных аппаратах
- •10.1.1. Рекуперативные теплообменники
- •10.1.2. Регенеративные теплообменные аппараты
- •10.1.3. Аппараты смешивающего типа
- •10.2 Расчет теплообменных аппаратов
- •10.2.1. Уравнение теплового баланса. Уравнение баланса массы.
- •10.2.2 Средний температурный напор.
- •10.2.3 Уравнение теплопередачи.
- •10.2.4 Проверочный расчет теплообменного аппарата. Сравнение прямотока с противотоком.
- •10.2.5 Гидравлический расчет аппаратов.
- •10.2.6 Тепловой расчет регенеративных теплообменников
- •10.3 Методики расчет теплообменных аппаратов
- •10.3.1. Математическая модель рекуперативного теплообменного аппарата и алгоритм его поверочного расчета по методу n-e.
- •10.3.2. Основные закономерности процесса испарительного охлаждения воды в градирнях
- •10.3.3. Деаэрация воды
- •Основы процесса
- •Кинетика процесса деаэрации воды
- •Конструктивные особенности термических деаэраторов
- •Список основных обозначений
- •- Число Стантона. Литература
Тема 1. Основные понятия теплообмена
1.1 Температурное поле. Изотермическая поверхность.
Температурное поле есть совокупность значений температуры во всех точках данной расчетной области и во времени.
Температурное
поле измеряют в градусах Цельсия и
Кельвинах и обозначают также как и в
ТТД :
,где хi
- координаты точки в пространстве, в
которой находят температуру, в метрах
[м]; τ – время процесса теплообмена в
секундах, [с]. Т. о. температурное поле
характеризуется количеством координат
и своим поведением во времени.
В тепловых расчетах используют следующие системы координат:
хi = х1, х2, х3 – произвольная ортогональная система координат;
хi = x, y, z – декартовая система координат;
хi = r, φ, z – цилиндрическая система координат;
хi = r, φ, ψ – сферическая система координат.
В зависимости от числа координат различают трехмерное, двумерное, одномерное и нульмерное (однородное) температурные поля.
Температурное поле, которое изменяется во времени, называют нестационарным температурным полем. И наоборот, температурное поле, которое не изменяется во времени, называют стационарным температурным полем.
Примеры записи температурных полей:
T(x,y,z,τ) – трехмерное нестационарное температурное поле;
T(τ) – нульмерное нестационарное температурное поле;
T(x) – стационарное одномерное температурное поле;
T = const – нульмерное стационарное температурное поле – частный случай температурного поля, характеризующего термодинамическое равновесие системы.
Изотермическая поверхность – поверхность равных температур.
Свойства изотермических поверхностей:
а)
изотермические поверхности не
пересекаются;
б) в нестационарных процессах изотермические поверхности перемещаются в пространстве.
В нашем курсе мы будем рассматривать тела, так называемой, простой или классической формы. Таких тел три:
— бесконечная или неограниченная пластина – пластина, у которой толщина много меньше (в несколько раз) длины и ширины;
— бесконечный цилиндр – цилиндр, у которого диаметр меньше (в несколько раз) длины цилиндра;
— шар или сфера.
Примеры изотермических поверхностей в телах простой формы:
а
Т
параллельные
образующим плоскостям данную пластину
(см. рис.1.1);
б) изотермические поверхности в бесконечном цилиндре при одинаковых по всей его поверхности условиях теплообмена – соосные (коаксиальные) цилиндрические поверхности или, другими словами, вложенные друг в друга цилиндры меньшего диаметра (см. рис.1.2);
Рис. 1.1. Изотермические поверхности
в бесконечной пластине
Рис. 1.2. Изотермические поверхности в бесконечном цилиндре
в) в шаре при равномерном нагреве или охлаждении изотермические поверхности – вложенные друг в друга сферы.
1.2. Градиент температуры
Градиент
температуры
(обозначается grad
T
или
)
– вектор, направленный по нормали к
изотермической поверхности, в сторону
увеличения температуры и численно
равный изменению температуры на единице
длины:
или
,
где
n
– нормаль;
- единичный вектор;
– оператор Гамильтона ("набла") -
символический вектор, заменяющий символ
градиента.
В декартовой системе координат:
,
где
– единичные векторы или орты в декартовой
системе координат.