Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_k_ekzamenu_po_IO_i_MO.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
172.54 Кб
Скачать
  1. Решение игры с нулевой суммой в смешанных стратегиях.

Антагонистическая игра (игра с нулевой суммой, англ. zero-sum) — термин теории игр. Антагонистической игрой называется некооперативная игра, в которой участвуют два игрока, выигрыши которых противоположны.

Формально антагонистическая игра может быть представлена тройкой <X, Y, F>, где X и Y — множества стратегий первого и второго игроков, соответственно; F — функция выигрыша первого игрока, ставящая в соответствие каждой паре стратегий (ситуации) (x,y),   действительное число, соответствующее полезности первого игрока при реализации данной ситуации. Так как интересы игроков противоположны, функция F одновременно представляет и проигрыш второго игрока.

Исторически антагонистические игры являются первым классом математических моделей теории игр, при помощи которых описывались азартные игры. Считается, что благодаря этому предмету исследования теория игр и получила свое название. В настоящее время антагонистические игры рассматриваются как часть более широкого класса некооперативных игр.

так, для игры с седловой точкой нахождение решения состоит в выборе максиминной и минимаксной стратегий, которые и являются оптимальными.

Если игра не имеет седловой точки, то применение чистых стратегий не дает оптимального решения игры. Например, в игре "Поиск" (пример 5.1) седловая точка отсутствует.

В этом случае можно получить оптимальное решение, чередуя чистые стратегии.

Смешанной стратегией игрока А называется применение чистых стратегий А1, А2, …, Аm c вероятностями u1, u2, …, um.

Обычно смешанную стратегию первого игрока обозначают как вектор: U = (u1, u2, …, um), а стратегию второго игрока как вектор: Z = (z1, z2, …, zm).

Очевидно, что:

ui ≥ 0,    , zj ≥ 0,    , ui = 1,   zj = 1.

Чистые стратегии можно считать частным случаем смешанных и задавать вектором, в котором единица соответствует чистой стратегии.

Оптимальное решение игры (или просто - решение игры) – это пара оптимальных стратегий U*, Z*, в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры v. Цена игры удовлетворяет неравенству:

 ≤ v ≤  ,

Справедлива следующая основная теорема теории игр.

Теорема Неймана. Каждая конечная игра с нулевой суммой имеет решение в смешанных стратегиях. .

Пусть U* = ( ,  , ...,  ) и Z* = ( ,  , ...,  ) - пара оптимальных стратегий. Если чистая стратегия входит в оптимальную смешанную стратегию с вероятностью, отличной от нуля, то она называется активной.

  1. Понятие стратегии в задачах теории игр.

В теории игр стратегия игрока в игре или деловой ситуации — это полный план действий при всевозможных ситуациях, способных возникнуть. Стратегия определяет действие игрока в любой момент игры и для каждого возможного течения игры, способного привести к каждой ситуации.

Набор стратегий — стратегии для каждого из игроков, которые полностью описывают все действия в игре. Набор стратегий обязан включать одну и только одну стратегию для каждого игрока.

Понятие стратегии иногда (ошибочно) путают с понятием хода. Ход является действием одного из игроков в какой-то момент игры. Стратегию можно сравнить с полным компьютерным алгоритмом для участия в игре, который предусматривает возможность хода из любого возможного положения во время игры. К примеру, число ходов в «крестиках-ноликах» 4 или 5, в зависимости от того, кто начал; число всех стратегий 384 или 945 соответственно.