Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_k_ekzamenu_po_IO_i_MO.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
172.54 Кб
Скачать
  1. Анализ решения задач линейного программирования.

Линейное программирование - математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах  -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Общей (стандартной) задачей линейного программирования называется задача нахождения минимума линейной целевой функции (линейной формы) вида[3]:

задача в которой фигурируют ограничения в форме неравенств, называется — основной задачей линейного программирования (ОЗЛП)

,

.

Задача линейного программирования будет иметь канонический вид, если в общей задаче вместо первой системы неравенств имеет место система уравнений с ограничениями в форме равенства[4]:

,

Основную задачу можно свести к канонической путём введения дополнительных переменных.

Задачи линейного программирования наиболее общего вида (задачи со смешанными ограничениями: равенствами и неравенствами, наличием переменных, свободных от ограничений) могут быть приведены к эквивалентным (имеющим то же множество решений) заменами переменных и заменой равенств на пару неравенств[5].

Легко заметить, что задачу нахождения максимума можно заменить задачей нахождения минимума, взяв коэффициенты   с обратным знаком.

  1. Решение задач целочисленного программирования методом ветвей и границ.

Метод ветвей и границ - общий алгоритмический метод для нахождения оптимальных решений различных задач оптимизации, особенно дискретной и комбинаторной оптимизации. По существу, метод является вариацией полного перебора с отсевом подмножеств допустимых решений, заведомо не содержащих оптимальных решений.

Общая идея метода может быть описана на примере поиска минимума функции   на множестве допустимых значений переменной  . Функция   и переменная   могут быть произвольной природы. Для метода ветвей и границ необходимы две процедуры: ветвление и нахождение оценок (границ).

Процедура ветвления состоит в разбиении множества допустимых значений переменной   на подобласти (подмножества) меньших размеров. Процедуру можно рекурсивно применять к подобластям. Полученные подобласти образуют дерево, называемое деревом поиска или деревом ветвей и границУзлами этого дерева являются построенные подобласти (подмножества множества значений переменной  ).

Процедура нахождения оценок заключается в поиске верхних и нижних границ для решения задачи на подобласти допустимых значений переменной  .

В основе метода ветвей и границ лежит следующая идея: если нижняя граница значений функции на подобласти   дерева поиска больше, чем верхняя граница на какой-либо ранее просмотренной подобласти  , то  может быть исключена из дальнейшего рассмотрения (правило отсева). Обычно минимальную из полученных верхних оценок записывают в глобальную переменную  ; любой узел дерева поиска, нижняя граница которого больше значения  , может быть исключен из дальнейшего рассмотрения.

Если нижняя граница для узла дерева совпадает с верхней границей, то это значение является минимумом функции и достигается на соответствующей подобласти.