
- •Вопросы к экзамену по дисциплине «Исследование операций и методы оптимизации»
- •Предмет, цели, задачи исследования операций, построение математических моделей.
- •Классификация задач исследования операций.
- •Понятие двойственности в задачах линейного программирования, правила построения двойственной задачи.
- •Первая теорема двойственности, экономический смысл
- •Вторая теорема двойственности, экономический смысл.
- •Третья теорема двойственности, экономический смысл.
- •Решение задач линейного программирования графическим способом.
- •Решение задач линейного программирования симплекс методом.
- •Анализ решения задач линейного программирования.
- •Транспортные задачи. Математическая модель прямой и двойственной задачи.
- •Метод наименьшего элемента.
- •Метод потенциалов
- •Формулировка транспортной задач Пусть m - пункты производства/потребления, n – дуги перевозок, c|n| - цены провоза по дугам n, Nb набор базисных столбцов.
- •Задачи динамического программирования. Общие уравнения алгоритма, реализующие принципы Беллмана.
- •Задачи теории игр. Основные понятия теории игр.
- •Классификация игр.
- •Решение игры с нулевой суммой в смешанных стратегиях.
- •Понятие стратегии в задачах теории игр.
- •Типы стратегий
- •Решение игры с нулевой суммой в чистых стратегиях.
- •Решение игры с нулевой суммой геометрическим способом.
- •Модель сетевого планирования и управления. Основные временные характеристики событий и работ.
- •Задача оптимизации при сетевом планировании.
- •Метод множителей Лагранжа.
Вопросы к экзамену по дисциплине «Исследование операций и методы оптимизации»
Предмет, цели, задачи исследования операций, построение математических моделей.
Исследование операций - дисциплина, занимающаяся разработкой и применением методов нахождения оптимальных решений на основе математического моделирования, статистического моделирования и различных эвристических подходов в различных областях человеческой деятельности.
Предмет - исследование этих операций с помощью математических методов их моделирования с целью обоснования принимаемых решений по организации оптимального управления этими операциями.
Цель исследования операций - предварительное количественное обоснование оптимальных решений с опорой на показатель эффективности. Само принятие решения выходит за рамки исследования операций и относится к компетенции ответственного лица (лиц).
Экономико-математическая модель - достаточно точное описание исследуемого экономического процесса или объекта с помощью математического аппарата (различного рода функций, уравнений, систем уравнений и неравенств и т.п.).
Классификация задач исследования операций.
Классификация по зависимости параметров задачи от времени.
1. Статическая задача. Принятие решения происходит при условии, что все параметры задачи заранее известны и не изменяются но времени. Процедура принятия решения осуществляется один раз.
2. Динамическая задача. В процессе принятия решения параметры задачи изменяются по времени. Процедура принятия решения осуществляется поэтапно и может быть представлена и виде процесса, зависящего от времени, в том числе непрерывно.
Классификация в зависимости от достоверности информации о задаче.
1. Детерминированная задача. Все параметры задачи заранее известны. Для решения детерминированных задач в основном применяются методы математического
программирования.
2. Не детерминированная задача. Не все параметры задачи заранее известны.
Например, необходимо принять решение об управлении устройством, некоторые узлы которого могут непредсказуемо выходить из строя. Оптимальное решение не детерминированной задачи ИСО отыскать практически невозможно. Однако некоторое "разумное" решение отыскать можно.
3. Стохастическая задача. Не все параметры задачи заранее известны, но имеются статистические данные о неизвестных параметрах (вероятности, функции распределения, математические ожидания и т.д.).
4. Задача в условиях (полной) неопределенности. Статистические данные неизвестных параметрах отсутствуют.
Понятие двойственности в задачах линейного программирования, правила построения двойственной задачи.
Любой задаче линейного программирования можно сопоставить сопряженную или двойственную ей задачу. Причем, совместное исследование этих задач дает, как правило, значительно больше информации, чем исследование каждой из них в отдельности.
Любую задачу линейного программирования можно записать в виде:
Первоначальная задача называется исходной или прямой.
Модель двойственной задачи имеет вид:
Переменные двойственной задачи называют объективно обусловленными оценками или двойственными оценками.
Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.
Двойственная задача по отношению к исходной составляется согласно следующим правилам:
целевая функция исходной задачи формулируется на максимум, а целевая функция двойственной задачи – на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид , а в задаче на минимум – вид ; матрица составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная матрица в двойственной задаче получаются друг из друга транспонированием; Число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи – числу переменных в исходной задаче; Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи – коэффициенты при неизвестных в целевой функции исходной задачи; Каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записанному в виде неравенства , соответствует переменная, связанная условием неотрицательности. Если функциональное ограничение исходной задачи является равенством, то соответствующая переменная двойственной задачи может принимать как положительные, так и отрицательные значения.
Математические модели пары двойственных задач могут быть симметричными и несимметричными. В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной – в виде неравенств, причем переменные в двойственной задаче могут быть и отрицательными. В симметричных двойственных задачах система ограничений как исходной, так и двойственной задачи задается в виде неравенств, причем на двойственные переменные налагается условие неотрицательности.