
Эмиссионный спектральный анализ
Методы эмиссионного спектрального анализа основаны на измерении длины волны, интенсивности и других характеристик света, излучаемого атомами и ионами вещества в газообразном состоянии. Возникновение спектрального анализа как метода определения химического состава вещества относится к 1860 г., когда была опубликована работа Кирхгофа и Бунзена: «Химический анализ с помощью наблюдения спектра».
Испускание света атомами происходит за счет изменения энергии атомов. Атомы могут обладать только строго определенными дискретными запасами внутренней энергии: Ео, Е1, Е2 и т. д.
Прибор для проведения спектрального анализа имеет следующие основные узлы: источник возбуждения, диспергирующий элемент и приемник света. Кроме этих основных узлов в любом спектральном приборе есть оптическая система, предназначенная для получения параллельного пучка света, его фокусировки, изменения хода лучей и т. д.
В источнике возбуждения вещество атомизируется и возбужденные атомы или ионы испускают свет, который диспергирующим элементом разделяется в пространстве на отдельные составляющие, а приемник света их фиксирует.
Качественный метод
Основой качественного спектрального анализа является свойство каждого химического элемента излучать характерный линейчатый спектр. Задача качественного спектрального анализа сводится к отысканию линий определяемого элемента в спектре пробы. Принадлежность линии данному элементу устанавливается по длине волны и интенсивности линии.
Попытки использовать зависимость интенсивности спектральных линий от концентрации элемента в пробе для количественного определения долгое время оставались безуспешными. Даже в начале XX в. возможности количественного спектрального анализа оценивались очень невысоко.
Количественный метод
Одной из основных причин неудач была недостаточная стабильность условий возбуждения. Интенсивность спектральной линии при прочих равных условиях определяется количеством возбужденных атомов в источнике возбуждения, которое зависит не только от концентрации элемента в пробе, но и от условий возбуждения. Перевод компонента твердой пробы в плазму связан с протеканием процессов плавления, испарения и возгонки. На состав плазмы, таким образом, оказывают влияние температура и теплота плавления компонентов пробы, их коэффициенты диффузии, давление пара, температура источника возбуждения и многие другие факторы, поэтому состав вещества в плазме источника возбуждения существенно отличается от состава исходной конденсированной пробы. Недостаточная стабильность условий возбуждения вызывала изменения в составе и температуре плазмы, что приводило к изменению интенсивности спектральных линий и, как следствие, к колебаниям в результатах анализа.
Полуколичественный метод
Обычная погрешность полуколичественных спектральных методов составляет 10 % или более. Однако когда простота и экспрессность важнее точности, эти методы применяют очень широко. Оценку интенсивности спектральных линий в полуколичественном анализе производят визуально, наблюдая спектр или непосредственно в окуляре спектрального прибора, или на фотопластинке.
Наиболее распространенным методом полуколичественного анализа является метод гомологических пар, или, как его иногда называют, метод однородных дублетов. Для проведения анализа этим методом предварительно подбирают пару линий (гомологическую пару или однородный дублет) и устанавливают, при какой концентрации определяемого элемента их интенсивности одинаковы
МЕТОДЫ РЕГИСТРАЦИИ СПЕКТРОВ
Измерения интенсивности спектральных линий в атомно-эмиссионном спектральном анализе могут осуществляться визуальным, фотографическим и фотоэлектрическим способами. В первом случае приемником излучения служит глаз, во втором — фотоэмульсия (фотохимический детектор), в третьем — фотоэлектрический детектор. Каждый способ имеет свои преимущества, недостатки и оптимальную область применения.
ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ЭМИССИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА
Методы эмиссионного спектрального анализа используются во многих областях науки и техники и в различных отраслях народного хозяйства. Этим методом выполняется значительная часть анализов в металлургической промышленности. Анализируется исходное сырье и готовая продукция. Особое значение имеет спектрально-аналитический контроль за ходом плавки, на основании которого вносятся оперативные изменения в ход технологического процесса, например по содержанию легирующих и других добавок. Визуальный спектральный анализ оказался очень удобным методом сортировки вторичного сырья металлургического производства, позволяя за несколько минут установить тип сплава или марку стали, что необходимо при составлении или корректировке шихты.
Очень эффективным оказалось применение спектральных методов при анализе разного рода геологических проб при поиске полезных ископаемых, а также для контроля технологического процесса на горно-обогатительных и гидрометаллургических предприятиях. Спектральным анализом контролируется качество поступающей руды, степень извлечения полезных и мешающих компонентов, а нередко и качество продукта.
Существенную роль играет спектральный анализ природных и сточных вод, почвы, атмосферы и других объектов окружающей среды, а также в медицине и биологии. Важное значение имеет спектральный анализ чистых материалов в электронной технике и других областях, анализ реактивов и т. д. Успешно используется спектральный анализ в космических исследованиях. Процесс совершенствования методов эмиссионной спектроскопии продолжается.