
- •Вариант 1 Построение математических моделей
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 2
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 3
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 4.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 5.
- •1.Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 6.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 7.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 8.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 9.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 10.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 11.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 12.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
Вариант 3
1. Построение математических моделей
Для откорма животных употребляют два вида корма. Стоимость одного килограмма корма первого вида –5 рублей, корма второго вида –2 рубля. В каждом килограмме корма первого вида содержится 5 единиц витамина А, 2,5 единиц витамина В и 1 единица витамина С. В каждом килограмме корма второго вида содержится 6 единиц витамина А,7 единиц витамина В и 2 единицы витамина С.
Построить математическую модель задачи
Какое количество корма каждого вида необходимо расходовать ежедневно, чтобы затраты на откорм были минимальными, если суточный рацион предусматривает не менее 225 единиц витамина А, не менее 150 единиц витамина В и не менее80 единиц витамина С?
2. Геометрическое решение задач линейного программирования.
Найти геометрическим способом
Fmax=2X1+3X2
8X1-5X2<=16
-X1+3X2<=2
2X1+7X2>=9
X1>=0, X2>=0
3. Симплексный метод решения задачи линейного программирования.
Найти симплексным методом Найти симплексным методом
Fmax=X1+4X2 +3 Х3 Fmax = 4X1-2X2 +X3
3X1- X2+2 Х3 <=3 X2+2X3>= -2
X1- X2+2 Х3 >=-1 -X1+ X2 >= -1
2X1+ X2+3 Х3 <=4 X1+ 2X2- X3<=1
X1>=0, X2>=0, X3>=0 X1>=0, X2>=0, X3>=0
4. Нахождение оптимального решения транспортной задачи.
Найти оптимальный план
поставок
-
Запас
Поставщ.
потребители
1
2
3
30
1
2
3
10
5
3
4
60
4
5
7
Спрос
Потребит.
20
40
60
-
Запас
Поставщ.
35
3
2
4
45
7
1
6
55
5
3
5
Спрос
Потребит.
25
35
75
5. Задача распределения средств между предприятиями.
Определить оптимальное распределение инвестиций в размере 6млн.руб. между 4 предприятиями. Доходность предприятий от вложенных средств приведена в таблице.
Раэмер инвестиций |
Доход 1-го предпр. |
Доход 2-го предпр. |
Доход 3-го предпр. |
Доход 4-го предпр. |
0 |
0 |
0 |
0 |
0 |
1 |
2.0 |
2.1 |
1.7 |
1.9 |
2 |
2.5 |
2.9 |
2.6 |
2.3 |
3 |
3.5 |
3.7 |
3.6 |
3.9 |
4 |
4.8 |
4.7 |
4.1 |
4.3 |
5 |
5.8 |
5.6 |
5.7 |
5.9 |
6 |
6.4 |
6.5 |
6.6 |
6.2 |