
- •Вариант 1 Построение математических моделей
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 2
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 3
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 4.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 5.
- •1.Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 6.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 7.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 8.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 9.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 10.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 11.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 12.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
5. Задача распределения средств между предприятиями.
Определить оптимальное распределение инвестиций в размере 6млн.руб. между 4 предприятиями. Доходность предприятий от вложенных средств приведена в таблице.
Раэмер инвестиций |
Доход 1-го предпр. |
Доход 2-го предпр. |
Доход 3-го предпр. |
Доход 4-го предпр. |
0 |
0 |
0 |
0 |
0 |
1 |
2.3 |
2.5 |
2.2 |
2.0 |
2 |
2.7 |
3.0 |
3.3 |
2.7 |
3 |
3.2 |
3.4 |
3.8 |
3.6 |
4 |
4.9 |
4.8 |
4.5 |
4.8 |
5 |
5.8 |
5.4 |
5.9 |
5.7 |
6 |
6.7 |
6.5 |
6.8 |
6.4 |
6. Задача о максимальном потоке.
Определить максимальный поток для сети заданной в табличном виде
Начало дуги (i) |
0 |
0 |
0 |
1 |
1 |
2 |
3 |
3 |
3 |
4 |
4 |
5 |
Конец дуги(j) |
1 |
2 |
4 |
2 |
4 |
3 |
4 |
5 |
6 |
5 |
6 |
6 |
Пропускная способность t(i,j) |
8 |
3 |
2 |
5 |
7 |
1 |
2 |
7 |
4 |
5 |
6 |
7 |
7. Построение сетевых графиков. Определение параметров сетевого графика
Построить сетевой график и определить ранние и поздние сроки свершения событий и критический путь
Начало дуги (i) |
0 |
0 |
0 |
1 |
1 |
2 |
3 |
3 |
3 |
4 |
4 |
5 |
Конец дуги(j) |
1 |
2 |
4 |
2 |
4 |
3 |
4 |
5 |
6 |
5 |
6 |
6 |
Длительность работы t(i,j) |
8 |
3 |
2 |
5 |
7 |
1 |
2 |
7 |
4 |
5 |
6 |
7 |
8. Методы расчета параметров систем массового обслуживания.
Сапожник (индивидуал) выполняет заказы по ремонту обуви. В среднем он выполняет заказ в течение 30 минут. Рядом с сапожником расположено одно кресло, в котором заказчик ожидает выполнения заказа. Сапожник не имеет постоянных заказчиков, и клиенты приходят к нему независимо друг от друга в среднем каждые 40 минут. Клиенты – народ нетерпеливый, поэтому в случае занятости сапожника уходят к другому.
Определить долю потерипотери клиентов, долю времени простоя и отношение – «заработанные деньги/потерянные деньги», если средняя стоимость ремонта составляет 100 рублей.
9. Задачи управления запасами
На АЗС хранятся горюче-смазочные материалы (ГСМ), которые расходуются с интенсивностью h=100тонн.в месяц. Затраты на закупку и доставку партии ГСМ от поставщиков товара на склад Сl=6000у.е. Затраты за хранение одной тонны ГСМ в единицу времени составляют Сs=0,70у.е. в месяц. В случае отсутствия ГСМ происходят затраты за дефицит в размере Ср=0,80у.е в день.
Требуется определить оптимальный объем партии, оптимальный период пополнения запасов и минимальные среднегодовые затраты