
- •Вариант 1 Построение математических моделей
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 2
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 3
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 4.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 5.
- •1.Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 6.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 7.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 8.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 9.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 10.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 11.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 12.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
Вариант 10.
1. Построение математических моделей
Два предприятия специализируются на выпуске одного изделия. Технологические процессы на предприятиях различны. Они характеризуются следующими затратами ресурсов:
металл первое предприятие затрачивает на единицу изделия – 1ед измер., а второе – 2ед.изм.
топливо первое предприятие затрачивает на единицу изделия – 2ед измер., а второе – 2ед.изм.
лимит по ресурсам по отрасли зада – по металлу – 200 ед.изм., по топливу – 300 ед изм.
Построить математическую модель задачи. Определить планы производства предприятий таким образом, чтобы суммарный выпуск изделий в ш
2. Геометрическое решение задач линейного программирования.
Найти геометрическим способом
Fmax=3X1-2X2
7X1+2X2>=14
-X1+2X2>=2
7X1+10X2>=28
X1>=0, X2>=0
3. Симплексный метод решения задачи линейного программирования.
Найти симплексным методом Найти симплексным методом
Fmax=X1+5X2 + 2Х3 Fmax = -4X1+3X2-X3
X1-X2 - 4 Х3 <=2 5X1+ X2-5X3<=5
X1-3X2 +2 Х3 <=3 -4X1+ X2- 2X3<=2
X1+ X2+2 Х3 <=6 4X1+X2-2X3<=8
X1>=0, X2>=0, X3>=0 X1>=0, X2>=0, X3>=0
4. Нахождение оптимального решения транспортной задачи.
Найти оптимальный план поставок
-
Запас
Поставщ.
потребители
1
2
3
35
2
1
3
30
4
2
5
70
3
1
4
Спрос
Потребит.
35
40
60
-
Запас
Поставщ.
30
3
1
4
10
7
3
5
50
3
2
1
Спрос
Потребит.
30
50
10
5. Задача распределения средств между предприятиями.
Определить оптимальное распределение инвестиций в размере 6млн.руб. между 4 предприятиями. Доходность предприятий от вложенных средств приведена в таблице.
Раэмер инвестиций |
Доход 1-го предпр. |
Доход 2-го предпр. |
Доход 3-го предпр. |
Доход 4-го предпр. |
0 |
0 |
0 |
0 |
0 |
1 |
2.0 |
2.1 |
1.7 |
1.9 |
2 |
2.9 |
2.9 |
2.7 |
2.8 |
3 |
3.9 |
3.8 |
3.6 |
3.9 |
4 |
4.9 |
4.7 |
4.5 |
5.3 |
5 |
5.9 |
6.1 |
5.7 |
5.9 |
6 |
7.0 |
6.9 |
6.6 |
7.2 |