
- •Вариант 1 Построение математических моделей
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 2
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 3
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 4.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 5.
- •1.Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 6.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 7.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 8.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 9.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 10.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 11.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
- •Вариант 12.
- •1. Построение математических моделей
- •2. Геометрическое решение задач линейного программирования.
- •3. Симплексный метод решения задачи линейного программирования.
- •5. Задача распределения средств между предприятиями.
- •6. Задача о максимальном потоке.
- •7. Построение сетевых графиков. Определение параметров сетевого графика
- •8. Методы расчета параметров систем массового обслуживания.
- •9. Задачи управления запасами
- •10. Использование принципа минимакса в решении игровых задач.
10. Использование принципа минимакса в решении игровых задач.
Кошка и мышка одновременно входят в лабиринт (рис.1),Они могут поворачивать за угол, но не могутни поворачивать обратно ни стоять на месте. Они двигаются с одинаковой скоростью и располагают временем для того, чтобы пройти три прямолинейных отрезка. При встрече кошка выигрывает единицу; если они не встретятся – платёж равен нулю. Найдите оптимальные стратегии кошки и мышки.
Кошка
Мышка
Рис.1.
Вариант 8.
1. Построение математических моделей
В торговом предприятии продаются два вида товаров. Рабочее время продавцов составляет 400 чел.час., полезная площадь торговых залов 120 кв. метров. Каждая проданная единица товара дает соответственно 50 и 80 руб. прибыли. Плановые нормы затрат ресурсов в расчете на единицу товара:
рабочее время на первый вид товара – 0,4 чел.час.на второй – 0,6 чел.час.
полезная площадь на первый вид товара – 0,1кв. метр, на второй – 0,2 кв.метр.
Построить математическую модель задачи. Определить оптимальную структуру товарооборота по критерию – максимум прибыли.
2. Геометрическое решение задач линейного программирования.
Найти геометрическим способом
Fmax,min=2X1+3X2
8X1- 5X2<=11
-X1+3X2<=1
2X1+7X2>=7
X1>=0, X2>=0
3. Симплексный метод решения задачи линейного программирования.
Найти симплексным методом Найти симплексным методом
Fmax=-8X1-3X2 -4Х3 Fmax = 2X1+4X2+X3
2X1+3X2+5 Х3 <=5 -2X1-2X2+5 X3<=5
-X1+4X2-2 Х3 <=6 -3X1+3X2-X3<=2
6X1 -2 X2+3 Х3 <=3 -X1+3X2- X3<=6
X1>=0, X2>=0, X3>=0 X1>=0, X2>=0, X3>=0
4. Нахождение оптимального решения транспортной задачи.
Найти оптимальный план поставок
-
Запас
Поставщ.
35
2
3
4
60
1
2
3
45
5
1
1
Спрос
Потребит.
30
40
80
-
Запас
Поставщ.
15
1
2
6
15
5
3
4
70
4
5
7
Спрос
Потребит.
30
40
30