Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция -Коллоидная химия-Б-УМК-2005.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
9.02 Mб
Скачать

Жидкообразные структурированные системы

При наличии структуры взаимодействием между час­тицами дисперсной фазы нельзя пренебречь. Прилагае­мое напряжение сдвига не только заставляет жидкость течь, но и может разрушать существующую в ней струк­туру. Это неизбежно должно приводить к нарушению про­порциональности между прилагаемым напряжением Р и скоростью деформации ˙γ, вязкость системы η становит­ся величиной, зависящей от Р. Следовательно, для таких жидкостей законы Ньютона, Пуазейля и Эйнштейна не выполняются. Такие жидкости называются неньютоно­выми жидкостями.

Для описания связи между скоростью деформации γ и прилагаемым напряжением сдвига Р обычно использу­ют эмпирическое уравнение Оствальда-Вейля:

P = kγn или η= kγ(n-1) (4)

где k и n— постоянные, характеризующие данную жидкообразную систему.

При n = 1 и k = η уравнение (4) превратится в урав­нение Ньютона. Таким образом, отклонение величины п от единицы характеризует степень отклонения свойств неньютоновых жидкостей от ньютоновых. При n < 1 нью­тоновская вязкость уменьшается с увеличением напря­жения и скорости сдвига. Такие жидкости называются псевдопластическими.

При n > 1 ньютоновская вязкость жидкости увеличи­вается при увеличении напряжения и скорости сдвига. Та­кие жидкости называются дилатантными.

На рис. представлена кривая течения псевдопласти­ческой жидкости. На кривой имеются три характерных участ­ка. На участке I(ОА) система ведет себя подобно ньютоновой жидкости с большой вязкостью η max = ctg α1 .Такое поведение системы объясняется тем, что при малых скоростях течения структура, разрушаемая при­ложенной нагрузкой, успевает восстанавливаться. Такое тече­ние называется ползучестью.

Ползучесть это медлен­ное течение с постоянной вяз­костью без прогрессирующего разрушения структуры.

Для слабоструктурирован­ных систем участок I обычно небольшой и его практически невозможно обнаружить. Для сильноструктурированных систем область значений Р, при которых наблюдается пол­зучесть, может быть весьма значительной. Напряжение Рк соответствует началу разрушения структуры.

На участке II (АВ) зависимость˙γ от Р теряет линей­ный характер, при этом вязкость уменьшается. Это умень­шение связано с разрушением структуры. В точке В струк­тура практически полностью разрушена. Напряжение, отвечающее этой точке, называется предельным напря­жением сдвига Рm . При напряжениях Р > Рm, когда струк­тура системы разрушена, система течет подобно ньютоно­вой жидкости, имеющей вязкость η max = ctg α2.

Напряжение Рт называется пределом текучести — это минимальное напряжение сдвига, при котором ползучесть системы переходит в течение. Чем прочнее структура, тем выше предел текучести. Расход жидкости в единицу времени Q, протекающей через трубу при Р < Pm можно рассчитать по уравнению Бингама:

Q = (k/η*пл)( Р- Рт) (5)

Где η*пл — пластическая вязкость, она характеризует спо­собность структуры к разрушению при изменении на­грузки, т. е. ηпл = f(P).

Прочность структуры оценивается не только пределом текучести, но и разностью ηmax - ηmin. Чем больше эта раз­ность, тем прочнее структура. Значения и ηmax и ηmin могут различаться на несколько порядков. Так, для суспензии бентонитовой глины ηmax = 106 Па с, a ηmin = 10-2 Па с.