Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция -Коллоидная химия-Б-УМК-2005.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
9.02 Mб
Скачать

3. Структурно-механические свойства дисперсных систем

Возникновение структур и их характер обычно опре­деляют, измеряя механические свойства систем: вязкость, упругость, пластичность, прочность. Поскольку эти свой­ства связаны со структурой, их называют структурно-механическими.

Структурно-механические свойства систем исследуют методами реологии.

Реология наука о деформациях и течении матери­альных систем. Она изучает механические свойства систем по проявлению деформации под действием вне­шних напряжений.

Термин деформация означает относительное смещение точек системы, при котором не нарушается ее сплошность.

Внешнее напряжение — есть не что иное, как давле­ние Р.

В механике сплошных сред доказывается, что в случае несжимаемых материалов, каковыми являются большин­ство дисперсных систем, все виды деформации (растяже­ние, сжатие, кручение и др.) можно свести к основной — деформации сдвига под действием напряжения сдвига Р (Н/м2 = Па). Скорость деформации является скоростью сдвига. Деформацию выражают обычно посредством безразмерных величин γ. Скорость деформации dγ/dt = γ, где t — время.

Изучая структурно-механические свойства дисперсных систем, можно определить, образуется ли в системе струк­тура и каков ее характер.

Свободнодисперсные (бесструктурные) системы

Агрегативно устойчивые золи (бесструктурные системы) подчиняются законам Ньютона, Пуазейля и Эйнштейна.

Закон Ньютона устанавливает связь между скорос­тью деформации и напряжением сдвига:

P = η∙( dγ/dt) = ηγ,

где Р — напряжение сдвига, поддерживающее течение жидкости, Па; γ— деформация (течение) жидкости; γскорость деформации; η— коэффициент пропорциональ­ности, называемый коэффициентом вязкости или динамической вязкостью, Па∙с; -1/η - величина, обратная вязкости, называется текучестью.

Вязкость η величина постоянная, не зависящая от Р.

Закон Пуазейля выражает зависимость объема жидко­сти, протекающей через трубу или капилляр, от давления:

Q= К Р/η,

где Q — расход жидкости в единицу времени; Р — давле­ние в трубе; К — константа, определяемая геометрическими параметрами трубы или капилляра К= πr 4 / 8 ∙l ,(r и l радиус и длина трубы). Из графика, отвечающего закону Пуазейля, видно, что динамическая вязкость не зависит от давления, а скорость течения жид­кости прямо пропорциональна давлению.

Закон Эйнштейна устанавливает зависимость вязкос­ти η бесструктурной жидкой дисперсной системы от кон­центрации дисперсной фазы:

η = η0(1 + αφ), (3)

где η0 — динамическая вязкость дисперсионной среды; φ— объемная концентрация дисперсной фазы; α—коэффициент, определяемый формой частиц дисперс­ной фазы. График, отвечающий закону Эйнштейна.

Таким образом, относительное приращение вязкости прямо пропорционально относительному содержанию дис­персной фазы. Чем больше φ, тем сильнее выражено тор­мозящее влияние частиц, тем больше вязкость. Расчеты, проведенные Эйнштейном, показали, что для сфериче­ских частиц α = 2,5, для частиц другой формы α > 2,5. Жидкости, подчиняющиеся рассмотренным законам, на­зываются ньютоновыми жидкостями.