
- •Москва 2012
- •1. Цели и задачи дисциплины
- •1.2. Задачи дисциплины:
- •2. Место дисциплины в структуре ооп
- •2.1. Связь с предшествующими дисциплинами
- •2.3. Связь с последующими дисциплинами
- •Требования к результатам освоения дисциплины
- •3.1. Процесс изучения дисциплины направлен на формирование следующих компетенций:
- •5. Содержание дисциплины
- •5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами
- •5.3. Распределение часов по видам занятий
- •6.1. Вопросы к зачету
- •6.2. Задания для контрольной работы Задание 1. Имеются следующие распределения работников предприятия по стажу работы:
- •Задание 21. Имеются следующие распределения работников предприятия по стажу работы:
- •6.2. Требования к контрольной работе
- •7. Учебно-методическое и информационное обеспечение дисциплины
- •8. Методические рекомендации по организации изучения дисциплины
- •Глава 1. Предмет, метод и задачи статистики как науки ………………………………...6
- •Глава 2. Статистическое наблюдение…………………………………………………......…….…13
- •Глава 3. Сводка и группировка материалов статистического наблюдения…….21
- •Глава 4. Обобщающие статистические показатели…………………………………….…..48
- •Глава 5. Средние величины……………………………………………………………………………56
- •Глава 6. Показатели вариации………………………………………………………………….….…69
- •Глава 7. Выборочное наблюдение…………………………………………………………………...88
- •Глава 8. Анализ рядов динамики………………………………………………………………..….105
- •Глава 9. Экономические индексы………………………………………………………………….130
- •Глава 10. Статистическое изучение взаимосвязей социально-экономических явлений……………………………………………………………………………………………………….…152
- •Введение
- •Глава 1. Предмет, метод и задачи статистики как науки
- •1.1. Понятие статистики
- •1.2. Развитие статистики как науки
- •1.3. Предмет, метод и основные категории статистики
- •Классификация статистических признаков
- •По характеру выражения:
- •2. По отношению ко времени:
- •4. По способу взаимовлияния:
- •1.4. Организация государственной статистики в Российской Федерации
- •Глава 2. Статистическое наблюдение
- •2.1. Понятие статистического наблюдения. Требования, предъявляемые к статистической информации
- •Программно-методологические и организационные вопросы статистического наблюдения
- •2.3. Организационные формы статистического наблюдения
- •2.4. Виды и способы статистического наблюдения
- •2.5. Ошибки статистического наблюдения и контроль его результатов
- •Глава 3. Сводка и группировка материалов статистического наблюдения
- •3.1. Статистическая сводка: понятие, элементы и классификация
- •3.2. Статистическая группировка: понятие, задачи и виды
- •Виды и задачи статистических группировок
- •3.3. Принципы построения статистических группировок и классификаций
- •3.4. Выполнение группировки по количественному признаку
- •1. Определение оптимального количества групп n.
- •3. Определение границ каждого интервала
- •4. Подсчет числа единиц , попавших в интервал
- •5. Группировка результатов наблюдения (занесение результатов в таблицу).
- •Пример. Имеются следующие данные об объеме товарооборота (млн. Руб.) 100 туристских предприятий региона за отчетный период:
- •Требуется построить группировку туристских предприятий по величине товарооборота. Решение.
- •Распределение туристских предприятий региона
- •3.5. Статистические ряды распределения
- •Распределение сотрудников туристской фирмы по уровню образования*
- •Группировка туристских предприятий региона по величине выручки за отчетный период*
- •3.6. Статистические таблицы
- •Название таблицы
- •Доля туризма в экономике государств по состоянию на 2009 г.
- •Объем услуг гостиниц и аналогичных средств размещения Российской Федерации за период 2002 – 2008 гг.
- •Группировка туристских предприятий одного из регионов рф в 2009 г. По численности сотрудников*
- •Распределение сотрудников туристской фирмы по уровню образования и по полу*
- •Динамика численности турфирм в Российской Федерации за 2002 – 2008 гг.
- •Динамика численности турфирм Российской Федерации, ведущих турагентскую деятельность в 2004 – 2008 гг.
- •Структура туристских фирм Российской Федерации по виду
- •Глава 4. Обобщающие статистические показатели
- •4.2. Абсолютные статистические величины
- •4.3. Относительные статистические величины
- •Глава 5. Средние величины
- •5.2. Виды степенных средних и методы их расчета
- •Основные показатели деятельности туристской фирмы
- •5.3. Структурные средние величины
- •Распределение сотрудников туристского предприятия по стажу работы
- •Глава 6. Показатели вариации
- •6.2. Показатели вариации
- •Вспомогательная таблица для расчета показателей вариации
- •6.3. Правило сложения дисперсий
- •6.4. Показатели структуры распределения
- •Моменты распределения первых четырех порядков
- •Глава 7. Выборочное наблюдение
- •Основные характеристики параметров генеральной и выборочной
- •7.2. Виды, методы и способы отбора
- •7.3. Ошибки выборки
- •При повторном отборе:
- •При бесповторном отборе:
- •Формулы средних ошибок для различных методов отбора
- •Соотношение между значениями доверительной вероятности и уровнями значимости
- •Расчет среднего объема продаж и дисперсии
- •7.4. Определение необходимой численности выборки
- •Формулы определения необходимого объема выборки n
- •7.5. Малая выборка
- •7.6. Распространение результатов выборочного наблюдения на генеральную совокупность
- •Глава 8. Анализ рядов динамики
- •Численность сотрудников туристского предприятия в 2002 – 2009 гг.
- •Число реализованных туристских путевок в Российской Федерации
- •8.2. Сопоставимость уровней и смыкание рядов динамики
- •Динамика выручки туристского предприятия за 2006 – 2009 гг.
- •8.3. Аналитические показатели ряда динамики
- •8.4. Средние показатели в рядах динамики
- •1. Интервальный ряд:
- •2. Моментный ряд:
- •8.5. Методы выявления основной тенденции (тренда) в рядах динамики
- •Виды функций и системы нормальных уравнений для нахождения моделей тренда
- •8.6. Измерение сезонных колебаний
- •Представление рядов динамики при определении гармоник Фурье
- •Значения синусов и косинусов для гармоник Фурье
- •8.7. Анализ рядов динамики и прогнозирование
- •Динамика численности туристов в 2005 – 2009 гг.
- •Вспомогательная таблица для расчета уравнения тренда
- •Глава 9. Экономические индексы
- •5. В зависимости от содержания и характера индексируемой величины:
- •9.2. Индивидуальные и общие индексы
- •9.3. Агрегатные индексы
- •9.4. Средние индексы
- •9.5. Индексный анализ средних величин: индексы постоянного, переменного составов и структурных сдвигов
- •9.6. Цепные и базисные индексы
- •1. Базисные индексы:
- •2. Цепные индексы:
- •9.7. Индексные системы и факторный анализ
- •9.8. Идеальный индекс Фишера
- •Глава 10. Статистическое изучение взаимосвязей социально-экономических явлений
- •По аналитическому выражению:
- •Критерии оценки тесноты связи
- •10.2. Статистические методы выявления корреляционной связи
- •10.3. Уравнение парной регрессии
- •10.4. Уравнение множественной регрессии
- •10.5. Показатели тесноты связи между количественными признаками
- •Оценка линейного коэффициента корреляции
- •Оценка тесноты линейной связи
- •Расчетная таблица для определения линейного коэффициента корреляции
- •Оценка тесноты линейной и нелинейной связи
- •10.6. Показатели тесноты связи между качественными признаками
- •Вспомогательная таблица для расчета коэффициента взаимной сопряженности
- •10.7. Ранговые коэффициенты связи
- •Заключение
- •Приложения
- •Значения функции
- •Значения интеграла вероятностей
- •Распределение Стьюдента ( -распределение)
- •Значения - критерия Стьюдента при уровне значимости 0,10; 0,05; 0,01
- •Значения - критерия Пирсона при уровне значимости 0,10; 0,05; 0,01 и числе степеней свободы V
- •Значения коэффициента корреляции рангов Спирмена для двухсторонних пределов уровня значимости
- •Значения функции р( )
- •Значения функции
- •Библиографический список
10.3. Уравнение парной регрессии
При статистическом изучении корреляционных зависимостей решаются две основные задачи:
1) нахождение формы связи между признаками и в виде математической формулы, выражающей эту зависимость;
2) измерение тесноты связи.
Эти задачи являются неразрывными и взаимно дополняющими друг друга задачами корреляционно-регрессионного анализа. Решение данных задач допускается в разной последовательности. В настоящем пособии сначала рассматривается нахождение уравнения регрессии, а затем – методы выявления и измерения тесноты связи.
Определение формы связи называется нахождением уравнения регрессии (уравнения связи).
Регрессия – это зависимость среднего значения случайной величины от одной или нескольких величин. Термин «регрессия» (от лат. regression – отступление, возврат к чему-либо) введен Ф. Гальтоном в 1886 г.
Парная регрессия позволяет получить аналитическое выражение связи между двумя признаками: факторным и результативным .
Найти уравнение регрессии – значит по фактическим (эмпирическим) данным математически описать изменения взаимно коррелируемых величин. Уравнение регрессии также называют теоретической линией регрессии – это линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление (основную тенденцию) связи. Теоретическая линия регрессии позволяет оценить среднее значение результативного признака при различных значениях факторного признака . При этом не должны учитываться все остальные факторы, влияющие на признак и не связанные с признаком .
Значения
результативного признака, рассчитанные
по уравнению регрессии, называются
теоретическими
.
То есть, теоретические значения
рассматриваются в виде функции, т.е.
=
Аналитическая связь между признаками может описываться следующими уравнениями:
прямая:
парабола:
гипербола: и др.
Считается, что если факторный и результативный признаки изменяются одинаково (примерно в арифметической прогрессии), то это свидетельствует о линейной связи между ними. Если признаки изменяются в разных направлениях, то связь является обратной. В этом случае применяется уравнение гиперболы. А если признаки изменяются в одном направлении, но с разной скоростью, то применяется параболическая или степенная функция.
После
выбора типа функции определяют параметры
уравнения регрессии. Параметры должны
быть такими, чтобы рассчитанные с их
помощью теоретические значения
результативного признака
,
минимально бы отличались от фактических
значений
.
То есть, теоретическая линия регрессии
должна быть проведена так, чтобы сумма
отклонений точек поля корреляции от
соответствующих точек теоретической
линии равнялась нулю (
).
Уравнение парной линейной регрессии имеет вид:
,
где:
-
среднее значение результативного
признака при определенном значении
факторного признака;
- свободный член уравнения (не имеет
экономического смысла);
-
коэффициент регрессии, который показывает,
на сколько единиц в среднем изменится
результативный признак при изменении
факторного признака на единицу его
измерения. При такой интерпретации
коэффициента регрессии
предполагается, что сила воздействия
признака
на признак
постоянна при любых значениях
.
С геометрической точки зрения коэффициент
регрессии характеризует угол наклона
лини регрессии к оси абсцисс.
Знак при коэффициенте регрессии показывает направление связи между признаками:
при > 0 – связь прямая;
при < 0 – связь обратная.
Параметры уравнения регрессии ( , ) определяются с помощью метода наименьших квадратов (МНК), согласно которому сумма квадратов отклонений теоретических значений результативного признака от фактических значений , была бы минимальной:
.
Рассмотрим парную линейную регрессию, так как линейная зависимость является наиболее используемой формой связи между двумя признаками.
Найдя частные производные указанной суммы по и , и, приравняв их нулю, получим систему нормальных уравнений при линейной парной регрессии:
где - объем исследуемой совокупности.
Решение этой системы дает параметры уравнения регрессии. Для нахождения параметров и при линейной зависимости могут использоваться готовые формулы:
;
Однако значения параметров и можно получить иначе. Если в системе нормальных уравнений каждое уравнение разделить на , то получим:
.
Теперь, зная значение
,
можно определить второй параметр
уравнений регрессии:
Если
связь выражена параболой, то для отыскания
параметров уравнения
,
и
применяется система нормальных уравнений
вида:
Решив систему, получим уравнение регрессии вида:
.
Оценка обратной зависимости признаков и может быть осуществлена на основе уравнения гиперболы. Тогда для нахождения параметров уравнения гиперболы применяется система нормальных уравнений вида:
Также коэффициент регрессии
можно рассчитать с помощью линейного
коэффициент корреляции
по
формуле:
.
Коэффициент
регрессии применяется для определения
коэффициента
эластичности
,
который показывает, на сколько процентов
изменится в среднем величина результативного
признака
при изменении факторного признака
на
1 %.
Коэффициент эластичности определяется по формуле:
Для большинства форм связи коэффициент эластичности является переменной величиной, т.е. изменяется в соответствии с изменением значений фактора .