
- •Москва 2012
- •1. Цели и задачи дисциплины
- •1.2. Задачи дисциплины:
- •2. Место дисциплины в структуре ооп
- •2.1. Связь с предшествующими дисциплинами
- •2.3. Связь с последующими дисциплинами
- •Требования к результатам освоения дисциплины
- •3.1. Процесс изучения дисциплины направлен на формирование следующих компетенций:
- •5. Содержание дисциплины
- •5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами
- •5.3. Распределение часов по видам занятий
- •6.1. Вопросы к зачету
- •6.2. Задания для контрольной работы Задание 1. Имеются следующие распределения работников предприятия по стажу работы:
- •Задание 21. Имеются следующие распределения работников предприятия по стажу работы:
- •6.2. Требования к контрольной работе
- •7. Учебно-методическое и информационное обеспечение дисциплины
- •8. Методические рекомендации по организации изучения дисциплины
- •Глава 1. Предмет, метод и задачи статистики как науки ………………………………...6
- •Глава 2. Статистическое наблюдение…………………………………………………......…….…13
- •Глава 3. Сводка и группировка материалов статистического наблюдения…….21
- •Глава 4. Обобщающие статистические показатели…………………………………….…..48
- •Глава 5. Средние величины……………………………………………………………………………56
- •Глава 6. Показатели вариации………………………………………………………………….….…69
- •Глава 7. Выборочное наблюдение…………………………………………………………………...88
- •Глава 8. Анализ рядов динамики………………………………………………………………..….105
- •Глава 9. Экономические индексы………………………………………………………………….130
- •Глава 10. Статистическое изучение взаимосвязей социально-экономических явлений……………………………………………………………………………………………………….…152
- •Введение
- •Глава 1. Предмет, метод и задачи статистики как науки
- •1.1. Понятие статистики
- •1.2. Развитие статистики как науки
- •1.3. Предмет, метод и основные категории статистики
- •Классификация статистических признаков
- •По характеру выражения:
- •2. По отношению ко времени:
- •4. По способу взаимовлияния:
- •1.4. Организация государственной статистики в Российской Федерации
- •Глава 2. Статистическое наблюдение
- •2.1. Понятие статистического наблюдения. Требования, предъявляемые к статистической информации
- •Программно-методологические и организационные вопросы статистического наблюдения
- •2.3. Организационные формы статистического наблюдения
- •2.4. Виды и способы статистического наблюдения
- •2.5. Ошибки статистического наблюдения и контроль его результатов
- •Глава 3. Сводка и группировка материалов статистического наблюдения
- •3.1. Статистическая сводка: понятие, элементы и классификация
- •3.2. Статистическая группировка: понятие, задачи и виды
- •Виды и задачи статистических группировок
- •3.3. Принципы построения статистических группировок и классификаций
- •3.4. Выполнение группировки по количественному признаку
- •1. Определение оптимального количества групп n.
- •3. Определение границ каждого интервала
- •4. Подсчет числа единиц , попавших в интервал
- •5. Группировка результатов наблюдения (занесение результатов в таблицу).
- •Пример. Имеются следующие данные об объеме товарооборота (млн. Руб.) 100 туристских предприятий региона за отчетный период:
- •Требуется построить группировку туристских предприятий по величине товарооборота. Решение.
- •Распределение туристских предприятий региона
- •3.5. Статистические ряды распределения
- •Распределение сотрудников туристской фирмы по уровню образования*
- •Группировка туристских предприятий региона по величине выручки за отчетный период*
- •3.6. Статистические таблицы
- •Название таблицы
- •Доля туризма в экономике государств по состоянию на 2009 г.
- •Объем услуг гостиниц и аналогичных средств размещения Российской Федерации за период 2002 – 2008 гг.
- •Группировка туристских предприятий одного из регионов рф в 2009 г. По численности сотрудников*
- •Распределение сотрудников туристской фирмы по уровню образования и по полу*
- •Динамика численности турфирм в Российской Федерации за 2002 – 2008 гг.
- •Динамика численности турфирм Российской Федерации, ведущих турагентскую деятельность в 2004 – 2008 гг.
- •Структура туристских фирм Российской Федерации по виду
- •Глава 4. Обобщающие статистические показатели
- •4.2. Абсолютные статистические величины
- •4.3. Относительные статистические величины
- •Глава 5. Средние величины
- •5.2. Виды степенных средних и методы их расчета
- •Основные показатели деятельности туристской фирмы
- •5.3. Структурные средние величины
- •Распределение сотрудников туристского предприятия по стажу работы
- •Глава 6. Показатели вариации
- •6.2. Показатели вариации
- •Вспомогательная таблица для расчета показателей вариации
- •6.3. Правило сложения дисперсий
- •6.4. Показатели структуры распределения
- •Моменты распределения первых четырех порядков
- •Глава 7. Выборочное наблюдение
- •Основные характеристики параметров генеральной и выборочной
- •7.2. Виды, методы и способы отбора
- •7.3. Ошибки выборки
- •При повторном отборе:
- •При бесповторном отборе:
- •Формулы средних ошибок для различных методов отбора
- •Соотношение между значениями доверительной вероятности и уровнями значимости
- •Расчет среднего объема продаж и дисперсии
- •7.4. Определение необходимой численности выборки
- •Формулы определения необходимого объема выборки n
- •7.5. Малая выборка
- •7.6. Распространение результатов выборочного наблюдения на генеральную совокупность
- •Глава 8. Анализ рядов динамики
- •Численность сотрудников туристского предприятия в 2002 – 2009 гг.
- •Число реализованных туристских путевок в Российской Федерации
- •8.2. Сопоставимость уровней и смыкание рядов динамики
- •Динамика выручки туристского предприятия за 2006 – 2009 гг.
- •8.3. Аналитические показатели ряда динамики
- •8.4. Средние показатели в рядах динамики
- •1. Интервальный ряд:
- •2. Моментный ряд:
- •8.5. Методы выявления основной тенденции (тренда) в рядах динамики
- •Виды функций и системы нормальных уравнений для нахождения моделей тренда
- •8.6. Измерение сезонных колебаний
- •Представление рядов динамики при определении гармоник Фурье
- •Значения синусов и косинусов для гармоник Фурье
- •8.7. Анализ рядов динамики и прогнозирование
- •Динамика численности туристов в 2005 – 2009 гг.
- •Вспомогательная таблица для расчета уравнения тренда
- •Глава 9. Экономические индексы
- •5. В зависимости от содержания и характера индексируемой величины:
- •9.2. Индивидуальные и общие индексы
- •9.3. Агрегатные индексы
- •9.4. Средние индексы
- •9.5. Индексный анализ средних величин: индексы постоянного, переменного составов и структурных сдвигов
- •9.6. Цепные и базисные индексы
- •1. Базисные индексы:
- •2. Цепные индексы:
- •9.7. Индексные системы и факторный анализ
- •9.8. Идеальный индекс Фишера
- •Глава 10. Статистическое изучение взаимосвязей социально-экономических явлений
- •По аналитическому выражению:
- •Критерии оценки тесноты связи
- •10.2. Статистические методы выявления корреляционной связи
- •10.3. Уравнение парной регрессии
- •10.4. Уравнение множественной регрессии
- •10.5. Показатели тесноты связи между количественными признаками
- •Оценка линейного коэффициента корреляции
- •Оценка тесноты линейной связи
- •Расчетная таблица для определения линейного коэффициента корреляции
- •Оценка тесноты линейной и нелинейной связи
- •10.6. Показатели тесноты связи между качественными признаками
- •Вспомогательная таблица для расчета коэффициента взаимной сопряженности
- •10.7. Ранговые коэффициенты связи
- •Заключение
- •Приложения
- •Значения функции
- •Значения интеграла вероятностей
- •Распределение Стьюдента ( -распределение)
- •Значения - критерия Стьюдента при уровне значимости 0,10; 0,05; 0,01
- •Значения - критерия Пирсона при уровне значимости 0,10; 0,05; 0,01 и числе степеней свободы V
- •Значения коэффициента корреляции рангов Спирмена для двухсторонних пределов уровня значимости
- •Значения функции р( )
- •Значения функции
- •Библиографический список
9.5. Индексный анализ средних величин: индексы постоянного, переменного составов и структурных сдвигов
Индексы позволяют проанализировать изменения средних величин. При изучении динамики качественных показателей приходится определять изменение средней величины индексируемого показателя.
При этом на изменение средней величины показателя одновременно могут влиять два фактора:
изменение значений индексируемого показателя (
) у отдельных единиц;
изменение состава (структуры) совокупности (
), т.е. весов.
Под
изменением структуры явления
понимается изменение доли отдельных
единиц совокупности в общей их численности
(
).
Например, средняя зарплата может вырасти
за счет роста оплаты труда сотрудников
или за счет увеличения доли высокооплачиваемых
сотрудников. Так как на изменение средней
величины показателя
влияют два фактора
,
то необходимо определить степень влияния
каждого из них на общую динамику средней.
Поэтому, индексный метод в статистике также применяется для решения следующих задач:
изучение динамики средних величин;
выявление факторов, влияющих на динамику средних величин.
Динамику среднего уровня качественного показателя для однородной совокупности статистика изучает с помощью системы трех взаимосвязанных индексов:
индекс переменного состава
;
индекс постоянного состава
;
индекс структурных сдвигов
.
Индекс переменного состава представляет собой соотношение средних величин показателя в текущем и базисном периодах.
В связи с тем, что средние величины рассчитываются, как правило, по формуле средней арифметической взвешенной, то индекс переменного состава для любых качественных показателей может быть построен следующим образом:
.
Он характеризует динамику среднего показателя в однородной совокупности за счет влияния двух факторов:
1) изменение индексируемой величины у отдельных единиц совокупности;
2) изменение структуры совокупности по изучаемому признаку (весов ).
Индекс постоянного
(фиксированного) состава отражает
динамику среднего показателя лишь за
счет изменения индексируемой величины
при фиксировании весов на уровне
отчетного периода
.
В общем виде данный индекс можно записать
следующим образом:
.
Индекс постоянного состава может быть рассчитан и в агрегатной форме:
Индекс структурных сдвигов отражает динамику среднего показателя лишь за счет изменения весов при фиксировании индексируемой величины на уровне базисного периода .
.
Индекс структурных сдвигов можно получить, разделив индекс переменного состава на индекс постоянного состава:
.
Этот индекс показывает, в какой степени изменение средней величины индексируемого показателя произошло за счет изменения структуры совокупности.
Таким образом, индексы переменного, постоянного состава и структурных сдвигов взаимосвязаны следующей формулой:
Если в качестве весов (соизмерителей) использовать показатели доли единиц совокупности в ее общей численности , то система индексов может быть писана в следующем виде:
где
,
-
доли отдельных единиц во всей совокупности
в базисном и отчетном периодах
соответственно (
).
Система индексов средних величин строится для изучения динамики среднего уровня цен, себестоимости, рентабельности, заработной платы, производительности труда, фондоотдачи и других признаков.
Также с помощью индексов средних величин можно отразить абсолютное изменение среднего уровня показателя за счет отдельных факторов. Например, общий абсолютный прирост (уменьшение) среднего уровня показателя в целом по совокупности находится как разность числителя и знаменателя индекса переменного состава:
Абсолютное изменение среднего уровня показателя в целом по совокупности можно показать за счет:
1) изменения значений индексируемого показателя (индекс постоянного состава):
;
2) изменения структуры совокупности (индекс структурных сдвигов):
;
В общем виде разложение индексов имеет вид:
.
Рассмотрим применение
индексного метода для анализа
динамики средней цены
.
При изучении динамики средней цены на
однородную продукцию (услуги), реализуемую
на разных рынках, можно рассчитать
следующие индексы:
Индекс переменного
состава:
где:
,
.
Данный индекс показывает, относительное изменение средней цены определенного вида товара, реализованного по разным ценам и на разных рынках за счет двух факторов:
- изменения цен на отдельных рынках;
- изменения количества (доли) товаров , реализованных на разных рынках.
Индекс постоянного
состава:
Этот индекс отражает среднее изменение цен на данный товар на всех рынках путем устранения влияния структурного фактора на динамику средних цен.
Индекс структурных сдвигов:
.
Этот индекс отражает изменение средней цены товара за счет структурного фактора, т.е. за счет изменения долей продукции, реализованной по разным ценам.
На основе данных индексов можно рассчитать абсолютное изменение средней цены в целом и за счет изменения отдельных факторов.
Абсолютное изменение средней цены за счет изменения индивидуальных цен и за счет изменения структуры совокупности (производства продукции):
Абсолютное изменение средней цены за счет изменения индивидуальных цен при условии постоянства структуры совокупности (производства продукции):
Абсолютное изменение средней цены за счет изменения структуры совокупности (производства продукции):
Тогда общее изменение средней цены составит:
Индексы средних величин взаимосвязаны следующим образом:
Аналогично можно оценить динамику средней себестоимости, производительности труда, заработной платы.