Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
STATISTIKA_-_turizm.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
5.17 Mб
Скачать

Динамика численности туристов в 2005 – 2009 гг.

Год

Численность туристов,

тыс. чел.

Абсолютный прирост ,

%

Темпы

роста ,

%

Темпы прироста ,

%

,

%

,

тыс.чел

2005

2006

2007

2008

2009

45

64

66

70

90

-

19

21

25

45

-

19

2

4

20

-

142,2

146,7

155,6

200,0

-

142,2

103,1

106,1

128,6

-

42,2

46,7

55,6

100,0

-

42,2

3,1

6,1

28,6

-

42,2

4,4

8,9

44,4

-

0,45

0,64

0,66

0,70

Рассчитаем аналитические показатели ряда динамики. Находим базисные и цепные абсолютные приросты:

, и т.д.

, и т.д.

Находим базисные и цепные темпы роста:

;

; и т.д.

;

; и т.д.

Темпы прироста найдем по формуле = %.

Находим темп наращивания : :

; и т.д.

Абсолютное значение 1% прироста A%:

; и т.д.

Определим средние показатели ряда динамики.

Средний уровень интервального ряда с равноотстоящими уровнями

тыс. чел.

Средний абсолютный прирост

тыс. чел.

тыс. чел.

Среднегодовой темп роста :

Среднегодовой темп прироста = - 100, = 119 % - 100 %=19 %.

Найдем линию тренда и, используя полученное уравнение, выполним прогноз численности туристов в 2011 году. Расчеты ведем с помощью вспомогательной таблицы (табл. 8.9).

Таблица 8.9

Вспомогательная таблица для расчета уравнения тренда

Год

Численность туристов, тыс. чел.

2005

2006

2007

2008

2009

45

64

66

70

90

-2

-1

0

1

2

4

1

0

1

4

-90

-64

0

70

180

47,8

57,4

67,0

76,6

86,2

335

0

10

96

335

Число уровней ряда нечетное, следовательно:

Параметры уравнения тренда:

;

.

Получаем уравнение линии тренда .

Находим выравненные уровни линии тренда :

t = -2, ; t = -1, ;

t = 0, ; t = 1, ; t = 2, .

Точечный прогноз численности туристов в 2011 году:

тыс. чел.

На рис. 8.1 представлен средний уровень ряда , а также фактические и выравненные уровни численности туристов за 2005 – 2009 гг.

Рис. 8.1. Фактические и выравненные уровни численности

туристов за 2005 – 2009 гг.

Экстраполяция позволяет получить точечное значе­ние прогнозов. На практике же результат экстраполяции обычно выполняется не точечными (дискретными), а интервальными оценками. Любой статистический прогноз носит приближенный харак­тер, поэтому целесообразно определение доверительных интер­валов прогноза:

.

где - расчетное зна­чение уровня (точечный прогноз, рассчитанный по модели тренда);

ta - коэффициент доверия по распределению Стьюдента.

= - остаточное среднее квадратическое отклонение тренда, скорректированное по числу степеней свободы (n – m);

n - число уровней базисного ряда динамики; параметров в уравнении;

m – число параметров адекватной модели тренда.

Следует учитывать, что экстраполяция носит не только приближенный, но и условный характер. Поэтому она является предварительным этапом в разработке прогнозов.

Контрольные вопросы

1. Дайте определение ряда динамики.

2. Назовите элементы ряда динамики.

3. В чем состоит классификация рядов динамики?

4. Какие задачи решаются с помощью статистических рядов динамики?

5. Какие требования предъявляются для сопоставимости рядов динамики?

6. Охарактеризуйте способы смыкания рядов динамики.

7. Чем отличаются базисные и цепные показатели ряда динамики?

8. Назовите и охарактеризуйте аналитические показатели ряда динамики.

9. Как определяются средние показатели изменения уровней ряда динамики?

10. Что называется основной тенденцией развития (трендом)?

11. Назовите и охарактеризуйте методы выявления основной тенденции в рядах динамики.

12. В чем заключается метод наименьших квадратов при определении параметров уравнения тренда?

13. Как измеряются сезонные колебания в рядах динамики?

14. Что является сезонной волной? Как она определяется?

15. Назовите этапы статистического прогнозирования.

16. Что называется экстраполяцией ряда динамики? Назовите методы экстраполяции.

17. Что представляет собой интерполяции динамического ряда?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]