
- •Раздел I современные угрозы и опасности радиационного и химического характера, анализ и оценка их риска
- •Глава 1
- •Глава 2
- •Раздел II основы обеспечения радиационной и химической безопасности населения
- •Глава 4
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Раздел I современные угрозы и опасности радиационного и химического характера, анализ и оценка их риска
- •Глава 1
- •1.1. Радиационная обстановка и основные источники формирования характеризующих ее угроз и опасностей
- •1.2. Химическая обстановка и основные источники формирования характеризующих ее угроз и опасностей
- •1.3. Влияние радиационных и химических факторов на экологическую обстановку и качество среды обитания
- •Глава 2
- •2.1. Характеристика радиационного и химического рисков, общие принципы установления приемлемых уровней
- •2.2. Радиационный риск и нормирование радиационных воздействий при нормальном функционировании радиационно опасных объектов
- •2.3. Радиационный риск, обусловленный
- •2.4. Химический риск и нормирование вредных
- •Глава 3
- •3.1. Факторы риска аварий и катастроф на радиационно опасных объектах
- •3.2. Факторы риска аварий и катастроф на химически опасных объектах
- •3.3. Единый методический подход к оценке риска при авариях и катастрофах на радиационно и химически опасных объектах
- •3.4. Методология обоснования приемлемых уровней риска
- •Раздел II основы обеспечения радиационной и химической безопасности населения
- •Глава 4
- •4.1. Инженерно-конструкторские
- •4.2. Инженерно-конструкторские
- •4.3. Общие положения по информированию
- •Глава 5
- •5.1. Обеспечение радиационной безопасности персонала радиационно опасных объектов
- •Медико-санитарные мероприятия
- •Определение задач и планирование мероприятий по обеспечению радиационной безопасности
- •Формирование организационных основ обеспечения радиационной безопасности на радиационно опасном объекте
- •Оповещение и информирование персонала
- •Зонирование радиационно опасных объектов
- •Организация радиационного контроля
- •Использование средств индивидуальной и коллективной защиты
- •Нормализация радиационной обстановки при ее ухудшении
- •5.2. Обеспечение химической безопасности персонала химически опасных объектов
- •Определение задач и планирование мероприятий по обеспечению химической безопасности
- •Формирование организационных основ обеспечения химической безопасности на химически опасных объектах
- •Оповещение и информирование персонала
- •Зонирование химически опасных объектов
- •Использование средств индивидуальной и коллективной защиты
- •Нормализация химической обстановки при ее ухудшении
- •Глава 6 Обеспечение радиационной и химической безопасности населения
- •6.1. Обеспечение радиационной безопасности населения
- •Определение задач и планирование мероприятий по обеспечению радиационной безопасности населения
- •Оповещение населения
- •Орган управления гочс области
- •Зонирование территорий
- •Организация радиационного контроля
- •Исполъзование средств коллективной и индивидуальной защиты
- •Эвакуация населения
- •Нормализация радиационной обстановки при ее ухудшении
- •6.2. Обеспечение химической безопасности населения
- •Медико-санитарные мероприятия
- •Формирование организационных основ обеспечения химической безопасности населения и ликвидации последствий химических аварий
- •Оповещение населения
- •Использование средств индивидуальной и коллективной защиты
- •Эвакуация населения
- •Нормализация химической обстановки при ее ухудшении
- •Раздел III
- •Глава 7 Основы управления
- •7.1. Общая организационно-функциональная структура процесса управления безопасностью и риском при техногенных воздействиях
- •7.2. Целевая функция и предметная область
- •7.3. Структурирование и некоторые подходы к моделированию предметной области
- •7.4. Структура информационно-управленческой технологии в сфере радиационной и химической безопасности
- •Глава 8
- •8.1. Управление радиационной и химической безопасностью в рамках определенных социально-экономических систем
- •8.2. Управление радиационной и химической безопасностью на уровне организационно-технических систем (радиационно и химически опасных объектов)
- •8.3. Экономические механизмы управления безопасностью и риском
- •Глава 9
- •9.1. Выявление обстановки, формирующейся при выбросах радиоактивных веществ в окружающую среду
- •9.2. Прогнозирование радиационной обстановки с использованием методов теории игр
- •9.3. Методологическая схема информационной
- •9.4. Методика прогнозирования заражений
- •9.5. Методики прогнозирования химических загрязнений воздушной среды городов
- •Глава 10
- •10.1. Субъекты государственного управления радиационной и химической безопасностью
- •10.2. Целевая функция и построение единой системы государственного управления в сфере радиационной безопасности
- •10.3. Целевая функция и построение единой системы государственного управления в сфере химической безопасности
- •Глава 11
- •11.1. Критерии оценки эффективности
- •11.2. Методологические основы оценки эффективности управления радиационной и химической безопасностью социально-экономических систем
- •11.3. Методологические основы оценки эффективности управления радиационной и химической безопасностью организационно-технических систем (радиационно и химически опасных объектов)
- •1. Общие положения
- •2. Выявление и оценка радиационной обстановки методом прогнозирования
- •2.1. Выявление радиационной обстановки
- •2.1.1. Определение размеров зон радиоактивного загрязнения
- •2.1.2. Определение размеров зон облучения щитовидной железы
- •2.1.3. Определение времени подхода радиоактивного облака
- •2.1.4. Определение мощности дозы внешнего гамма-излучения на следе радиоактивного облака
- •2.2. Оценка радиационной обстановки
- •2.2.1. Определение дозы внешнего гамма-облучения при прохождении радиоактивного облака
- •2.2.2. Определение дозы внешнего гамма-облучения при расположении населения на следе облака
- •2.2.3. Определение дозы облучения щитовидной железы
- •2.2.4. Определение дозы внешнего облучения при преодолении следа облака
- •2.2.5. Определение допустимого времени начала преодоления следа
- •2.2.6. Определение допустимого времени пребывания на загрязненной территории
- •2.2.7. Определение допустимого времени начала работ на загрязненной территории
- •3. Выявление и оценка радиационной обстановки по данным разведки
- •3.1. Выявление радиационной обстановки по данным разведки
- •3.2. Оценка радиационной обстановки по данным разведки
- •1. Общие положения
- •2. Прогнозирование глубины зоны загрязнения ахов
- •2.1.2. Определение эквивалентного количества вещества во вторичном облаке
- •2.2. Расчет глубины зоны загрязнения при аварии на химически опасном объекте
- •4. По приложению 2 интерполированием находим глубину зоны загрязнения:
- •2.3. Расчет глубины зоны загрязнения при разрушении химически опасного объекта
- •3. Определение площади зоны загрязнения ахов
- •1. Рассчитываем площадь зоны возможного загрязнения по формуле (9):
- •4. Определение времени подхода загрязненного воздуха к объекту и продолжительности поражающего действия ахов
- •4.1. Определение времени подхода загрязненного воздуха к объекту
- •4.2. Определение продолжительности поражающего действия ахов
- •Порядок нанесения зон загрязнения на топографические карты и схемы
- •Радиационная и химическая безопасность населения
4. По приложению 2 интерполированием находим глубину зоны загрязнения:
1 25 — 0 85
/1
=
0,85 + '
'
• 0,01 = 0,93 км.
1 0,05
' '
5. По формуле (7) находим предельно возможное значение глубины пере- носа воздушных масс:
уп =1 . 5=5км.
6. Расчетная глубина зоны загрязнения принимается равной 0,93 км как минимальная из у1 и уп.
7. Глубина зоны загрязнения для жилых кварталов:
0,93 - 0,2 - 0,3 = 0,43 км.
Таким образом, облако зараженного воздуха через 1 ч после аварии может представлять опасность для рабочих и служащих химически опасного объекта, а также населения города, проживающего на расстоянии 430 м от санитар-но-защитной зоны объекта.
Пример 2.3
Оценить, на каком расстоянии через 4 ч после аварии будет сохраняться опасность загрязнения населения в зоне химического загрязнения при разрушении изотермического хранилища аммиака емкостью 30 000 т.
Высота обваловки емкости 3,5 м. Температура воздуха 20 °С.
Решение
1. Поскольку метеоусловия и выброс неизвестны, то, согласно п. 1.5, принимаются метеоусловия — инверсия, скорость ветра — 1 м/с, выброс равен общему количеству вещества, содержащегося в емкости — 30 000 т.
2. По формуле (1) определяем эквивалентное количество вещества в пер- вичном облаке:
Q31 = 0,01 . 0,04 . 1 . 1 . 30 000 = 12 т.
3. По формуле (12), приведенной ниже, определяем время испарения ам- миака:
= (3,5 — 0,2) • 0,681 =
0,025 • 1 • 1 ' '
4. По формуле (5) определяем эквивалентное количество вещества во вто- ричном облаке:
Qэ2
= (1 - 0,01) .
0,025
.
0,04
• 1 .
1
.
40,8
.
1. 30 =40т.
э2 v J (3,5 — 0,2) • 0,681
5. По приложению 2 для 12 т интерполированием находим глубину загряз- нения для первичного облака аммиака:
(
29
56 —19
2
/1
=
19,2 + 29,56
19,2
•
2
=21,3
км.
6. Аналогично для 40 т находим глубину загрязнения для вторичного облака аммиака:
/2
=
38,13 + I
52,67
—
38,13
•ю]
=
45,4
км.
50 —30
7. Полная глубина зоны загрязнения:
Г = 45,4 + 0,5 • 21,3 = 56,05 км.
8. По формуле (7) находим предельно возможное значение глубины пере- носа воздушных масс:
Гп = 4 • 5 = 20км.
Таким образом, через 4 ч после аварии облако загрязненного воздуха может представлять опасность для населения, проживающего на расстоянии до 20 км.
Пример 2.4
На участке аммиакопровода Тольятти—Одесса произошла авария, сопровождавшаяся выбросом аммиака. Объем выброса не установлен. Требуется определить глубину зоны возможного загрязнения аммиаком через 2 ч после аварии. Разлив аммиака на подстилающей поверхности свободный. Температура воздуха 20 °С.
Решение
1. Так как объем разлившегося аммиака неизвестен, то, согласно п. 1.7, принимаем его равным 500 т — максимальному количеству, содержащемуся в трубопроводе между автоматическими отсекателями. Метеоусловия, согласно п. 1.5, принимаются: инверсия, скорость ветра 1 м/с.
2. По формуле (1) определяем эквивалентное количество вещества в пер- вичном облаке:
0э1 = 0,18 . 0,04 . 1 . 1 . 500 = 3,6 т.
3. По формуле (12) определяем время испарения аммиака:
т 0,05 • 0,681 л .
T = — = 1,4 ч.
0,025 • 1 • 1
4. По формуле (5) определяем эквивалентное количество вещества во вто- ричном облаке:
Оэ2 = (1 - 0,18) . 0,025 . 0,04 • 1 . 1 . 1,40,8 . 1 . ^^^681 = 15,8 т.
0,05 • 0,681
5. По Приложению 2 для 3,6 т интерполированием находим глубину зоны загрязнения для первичного облака:
(1253
-
9 18 > Г1
=
9,18 + '
'
• 0,6 =10,2
км.
6. По Приложению 2 для 15,8 т интерполированием находим глубину зоны загрязнения для вторичного облака:
J
(
29 56 -19
2
^
Г2
=
19,2 + У'
У'
• 5,8 = 25,2 км.
20 -10
7. Полная глубина зоны загрязнения:
25,2 + 0,5 • 10,2 = 30,3 км.
8. По формуле (7) находим предельно возможное значение глубины пере- носа воздушных масс:
Гп =2. 5=10км.
Таким образом, глубина зоны возможного загрязнения через 2 ч после аварии составит 10 км.