
- •Раздел I современные угрозы и опасности радиационного и химического характера, анализ и оценка их риска
- •Глава 1
- •Глава 2
- •Раздел II основы обеспечения радиационной и химической безопасности населения
- •Глава 4
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Раздел I современные угрозы и опасности радиационного и химического характера, анализ и оценка их риска
- •Глава 1
- •1.1. Радиационная обстановка и основные источники формирования характеризующих ее угроз и опасностей
- •1.2. Химическая обстановка и основные источники формирования характеризующих ее угроз и опасностей
- •1.3. Влияние радиационных и химических факторов на экологическую обстановку и качество среды обитания
- •Глава 2
- •2.1. Характеристика радиационного и химического рисков, общие принципы установления приемлемых уровней
- •2.2. Радиационный риск и нормирование радиационных воздействий при нормальном функционировании радиационно опасных объектов
- •2.3. Радиационный риск, обусловленный
- •2.4. Химический риск и нормирование вредных
- •Глава 3
- •3.1. Факторы риска аварий и катастроф на радиационно опасных объектах
- •3.2. Факторы риска аварий и катастроф на химически опасных объектах
- •3.3. Единый методический подход к оценке риска при авариях и катастрофах на радиационно и химически опасных объектах
- •3.4. Методология обоснования приемлемых уровней риска
- •Раздел II основы обеспечения радиационной и химической безопасности населения
- •Глава 4
- •4.1. Инженерно-конструкторские
- •4.2. Инженерно-конструкторские
- •4.3. Общие положения по информированию
- •Глава 5
- •5.1. Обеспечение радиационной безопасности персонала радиационно опасных объектов
- •Медико-санитарные мероприятия
- •Определение задач и планирование мероприятий по обеспечению радиационной безопасности
- •Формирование организационных основ обеспечения радиационной безопасности на радиационно опасном объекте
- •Оповещение и информирование персонала
- •Зонирование радиационно опасных объектов
- •Организация радиационного контроля
- •Использование средств индивидуальной и коллективной защиты
- •Нормализация радиационной обстановки при ее ухудшении
- •5.2. Обеспечение химической безопасности персонала химически опасных объектов
- •Определение задач и планирование мероприятий по обеспечению химической безопасности
- •Формирование организационных основ обеспечения химической безопасности на химически опасных объектах
- •Оповещение и информирование персонала
- •Зонирование химически опасных объектов
- •Использование средств индивидуальной и коллективной защиты
- •Нормализация химической обстановки при ее ухудшении
- •Глава 6 Обеспечение радиационной и химической безопасности населения
- •6.1. Обеспечение радиационной безопасности населения
- •Определение задач и планирование мероприятий по обеспечению радиационной безопасности населения
- •Оповещение населения
- •Орган управления гочс области
- •Зонирование территорий
- •Организация радиационного контроля
- •Исполъзование средств коллективной и индивидуальной защиты
- •Эвакуация населения
- •Нормализация радиационной обстановки при ее ухудшении
- •6.2. Обеспечение химической безопасности населения
- •Медико-санитарные мероприятия
- •Формирование организационных основ обеспечения химической безопасности населения и ликвидации последствий химических аварий
- •Оповещение населения
- •Использование средств индивидуальной и коллективной защиты
- •Эвакуация населения
- •Нормализация химической обстановки при ее ухудшении
- •Раздел III
- •Глава 7 Основы управления
- •7.1. Общая организационно-функциональная структура процесса управления безопасностью и риском при техногенных воздействиях
- •7.2. Целевая функция и предметная область
- •7.3. Структурирование и некоторые подходы к моделированию предметной области
- •7.4. Структура информационно-управленческой технологии в сфере радиационной и химической безопасности
- •Глава 8
- •8.1. Управление радиационной и химической безопасностью в рамках определенных социально-экономических систем
- •8.2. Управление радиационной и химической безопасностью на уровне организационно-технических систем (радиационно и химически опасных объектов)
- •8.3. Экономические механизмы управления безопасностью и риском
- •Глава 9
- •9.1. Выявление обстановки, формирующейся при выбросах радиоактивных веществ в окружающую среду
- •9.2. Прогнозирование радиационной обстановки с использованием методов теории игр
- •9.3. Методологическая схема информационной
- •9.4. Методика прогнозирования заражений
- •9.5. Методики прогнозирования химических загрязнений воздушной среды городов
- •Глава 10
- •10.1. Субъекты государственного управления радиационной и химической безопасностью
- •10.2. Целевая функция и построение единой системы государственного управления в сфере радиационной безопасности
- •10.3. Целевая функция и построение единой системы государственного управления в сфере химической безопасности
- •Глава 11
- •11.1. Критерии оценки эффективности
- •11.2. Методологические основы оценки эффективности управления радиационной и химической безопасностью социально-экономических систем
- •11.3. Методологические основы оценки эффективности управления радиационной и химической безопасностью организационно-технических систем (радиационно и химически опасных объектов)
- •1. Общие положения
- •2. Выявление и оценка радиационной обстановки методом прогнозирования
- •2.1. Выявление радиационной обстановки
- •2.1.1. Определение размеров зон радиоактивного загрязнения
- •2.1.2. Определение размеров зон облучения щитовидной железы
- •2.1.3. Определение времени подхода радиоактивного облака
- •2.1.4. Определение мощности дозы внешнего гамма-излучения на следе радиоактивного облака
- •2.2. Оценка радиационной обстановки
- •2.2.1. Определение дозы внешнего гамма-облучения при прохождении радиоактивного облака
- •2.2.2. Определение дозы внешнего гамма-облучения при расположении населения на следе облака
- •2.2.3. Определение дозы облучения щитовидной железы
- •2.2.4. Определение дозы внешнего облучения при преодолении следа облака
- •2.2.5. Определение допустимого времени начала преодоления следа
- •2.2.6. Определение допустимого времени пребывания на загрязненной территории
- •2.2.7. Определение допустимого времени начала работ на загрязненной территории
- •3. Выявление и оценка радиационной обстановки по данным разведки
- •3.1. Выявление радиационной обстановки по данным разведки
- •3.2. Оценка радиационной обстановки по данным разведки
- •1. Общие положения
- •2. Прогнозирование глубины зоны загрязнения ахов
- •2.1.2. Определение эквивалентного количества вещества во вторичном облаке
- •2.2. Расчет глубины зоны загрязнения при аварии на химически опасном объекте
- •4. По приложению 2 интерполированием находим глубину зоны загрязнения:
- •2.3. Расчет глубины зоны загрязнения при разрушении химически опасного объекта
- •3. Определение площади зоны загрязнения ахов
- •1. Рассчитываем площадь зоны возможного загрязнения по формуле (9):
- •4. Определение времени подхода загрязненного воздуха к объекту и продолжительности поражающего действия ахов
- •4.1. Определение времени подхода загрязненного воздуха к объекту
- •4.2. Определение продолжительности поражающего действия ахов
- •Порядок нанесения зон загрязнения на топографические карты и схемы
- •Радиационная и химическая безопасность населения
9.2. Прогнозирование радиационной обстановки с использованием методов теории игр
В настоящее время существует довольно большое количество методов прогнозирования, основанных на эвристическом и математическом подходах, а также на их сочетании. Однако прогнозирование радиационной обстановки осуществляется главным образом математическими методами, предусматривающими широкое применение моделей процесса распространения радиоактивных веществ в окружающей среде.
Основываясь на анализе современных подходов к прогнозированию негативных воздействий при различного рода событиях и явлениях экстремального характера, можно выделить два основных математических метода прогнозирования радиационной обстановки: детерминированный и вероятностный. Следует отметить, что при прогнозировании радиационной обстановки может найти практическое применение также метод, базирующийся на теории игр и статистических решений.
Первый из указанных выше методов основывается на определении уровней радиационных полей и пространственно-временных параметров зон радиоактивного загрязнения с помощью функциональных зависимостей, связывающих эти величины с исходными данными детерминированного характера. При этом указанные зависимости выражаются в аналитической, графической или табличной формах.
Учет стохастического характера исходной метеорологической и другой информации, а также процессов распространения радиоактивных веществ в окружающей среде носит ограниченный характер. При проведении расчетов берутся за основу наиболее вероятные либо средние значения исходных параметров. При отображении радиационной обстановки на электронных устройствах, картах и схемах зоны радиоактивного загрязнения, как правило, изображаются в виде эллипсов, хотя на практике зоны радиоактивного загрязнения, как правило, далеки от элипсовидной формы. Рассматриваемый метод приемлем при прогнозировании радиационной обстановки на небольших расстояниях от источников опасности и при малых временных параметрах процесса загрязнения.
Положение осевой линии радиоактивного следа считается детерминированным. Однако стохастическая природа распределения радиоактивных веществ в облаке выброса при его движении в турбулентной атмосфере учитывается. В случае прогноза обстановки при ядерных взрывах обычно учитывается также дисперсия эпицентра взрыва. Детерминированный метод находит достаточно широкое применение в штабах войск и органах управления гражданской обороны при прогнозировании радиационной обстановки после возможных ядерных взрывов. Он также применяется при оценке возможных последствий аварий на радиационно опасных объектах.
Второй метод основан на вероятностном подходе к заданию исходных данных и получению прогнозной информации. В этом методе, по возможности, в полной мере учитывается стохастическая природа параметров, характеризующих источник радиационной опасности, а также процессов формирования и распространения радиоактивных загрязнений окружающей среды и уровней полей излучений. При этом методе прогнозирования, в силу изменчивости параметров ветра, точное местоположение радиационного следа, образующегося при аварийных выбросах или взрывах на местности, не определяется, а лишь прогнозируется район, в пределах которого с определенной гарантированной вероятностью этот след будет находиться. Такой подход к оценке пространственно-временных параметров радиоактивного загрязнения наиболее приемлем при оперативном прогнозировании. При заблаговременном прогнозировании обстановки прогнозирование радиоактивного загрязнения целесообразно производить с учетом розы ветров. При этом вместо определения местоположения следа с той или иной гарантированной вероятностью проводится многовариантная оценка, находится диаграмма вектора вероятности положения осевой линии следа.
Прогнозирование и оценка радиационной обстановки может проводиться и с использованием теории игр со случайными ходами.
Такое прогнозирование радиационной обстановки может рассматриваться как один из новых малоизученных в приложении к данной проблеме методов. В этом методе прогнозирование сочетается с оценкой обстановки и выбором наиболее приемлемых мер и средств по обеспечению радиационной безопасности.
Как известно, теорию игр составляет математическая теория конфликтных ситуаций. Ее задачей является выработка рекомендаций по рациональному образу действий в условиях неопределенности. При прогнозировании радиационной обстановки неопределенность проявляется в неоднозначности метеоусловий, исходных данных по характеру и параметрам выброса радиоактивных веществ и т.д. Ситуации, возникающие в процессе прогнозирования радиационной обстановки, условно могут быть отнесены к конфликтным. Формирование тех или иных условий обстановки здесь связано не с сознательной деятельностью противостоящей стороны, а с некоторыми факторами, имеющими случайный характер. В играх такого рода, наряду с так называемыми личными ходами, имеют место случайные ходы. Для каждого случайного хода правила игры определяются распределением вероятностей возможных исходов.
Вариант действий той или иной стороны, выбор которого определяется совокупностью правил, в теории игр носит название стратегии. Принятие решения о выборе стратегии в ряде случаев может зависеть от обстоятельств, связанных с недостаточностью информации о погодных и иных условиях. Подобная ситуация возникает при выборе стратегии, определяющей формирование радиационной обстановки. Такого рода стратегии обычно называют «стратегиями природы». Выбор стратегии природы, как правило, осуществляется исходя из известных величин вероятности реализации условий, при которых происходит формирование радиационной обстановки.
Стратегии природы принимаются в качестве стратегий противостоящей стороны. Стратегии выражаются вариантами мер и действий по обеспечению радиационной безопасности.
Каждая из стратегий природы содержит набор метеопараметров, принимаемых во внимание при прогнозировании радиационной обстановки, и характеризуется вероятностью реализации. Стратегии, соответствующие различным вариантам мер и действий по обеспечению радиационной безопасности, определяются совокупностью и результативностью этих мер и действий. Причем все стратегии, относящиеся к нашей стороне, рассматриваются при одной и той же ситуации. Каждая из этих стратегий характеризуется набором вариантов радиационной обстановки по числу принятых для анализа вариантов метеоусловий.
Для
решения задачи выбора оптимальной
стратегии должна разрабатываться
матрица, элементами которой являются
показатели, характеризующие качество
выигрыша, то есть полезность и
эффективность стратегии. Качество
выигрыша определяется набором параметров
радиационной обстановки, от которых
зависит степень ее опасности, выражаемая
через интегральный показатель.
Интегральный показатель может
интерпретироваться, например, как
уровень радиационного риска. Матрица
представлена в виде таблицы (табл. 9.2).
Наиболее простым случаем выбора подходящей стратегии является случай, когда какая-либо из стратегий по всем показателям превосходит другие, то есть матрица содержит доминирующую стратегию. В общем случае, когда ни одна стратегия не доминирует над другой, проводится анализ матрицы выигрышей. Для проведения этого анализа в ряде случаев целесообразно преобразование матрицы с введением понятия риска применения стратегии. Под риском применения стратегии, в соответствии с теорией игр и статистических решений, понимается разность между максимальным для данной стратегии природы значением показателя качества выигрыша и его величиной при рассматриваемой стратегии обеспечения радиационной безопасности:
rij =bj (9.3)
где: rij — риск при i-й стратегии; j
bj — максимальное значение показателя качества выигрыша.
При использовании матрицы как с элементами aj, так и Гц выбор оптимальной стратегии проводится по максимальному значению математического ожидания выигрыша. Величина математического ожидания выигрыша для каждой из стратегий вычисляется по формуле:
ai = P1 • ai1 + P2 • ai2 +---+Pn • ain, (9.4)
где: Py, P2,--, Pn — вероятность реализации стратегии природы.
Имеется в виду, что величины P1, P2,—, Pn заранее известны, исходя из многолетнего опыта по определению метеопараметров в данном районе.
Рассмотренный подход к определению стратегии может применяться при обосновании решений на применение мер и средств обеспечения радиационной безопасности с учетом всех возможных вариантов метеоусловий.
Задача по оценке радиационного воздействия с использованием теории игр со случайными ходами и статистических решений может ставиться и несколько иначе. В качестве стратегий противостоящей стороны могут быть приняты не метеорологические условия распространения радиоактивных веществ в окружающей среде, а совокупности исходных событий возникновения, характерных особенностей развития аварий, иными словами, различные аварийные ситуации.
Выбор такого рода стратегии противоположной стороной, как и в рассмотренном ранее случае, осуществляется случайным ходом. Для каждого случайного хода правила игры определяются распределением вероятности возможных исходов, то есть выбором той или иной стратегии. При разработке множества стратегий учитываются все возможные происшествия, аварии и катастрофы для каждого из радиационно опасных объектов.
Наши стратегии, как и в предыдущем случае, будут выражаться различными вариантами мер и действий по обеспечению радиационной безопасности. Однако фиксированными здесь являются метеоусловия. Каждая из стратегий характеризуется набором вариантов радиационной обстановки по числу принимаемых во внимание вариантов происшествий, аварий и катастроф.
Элементы матрицы, разрабатываемой для решения задачи, как и прежде, характеризуют эффективность стратегий через интегральный показатель радиационного воздействия на людей, другие популяции, сообщества и объекты биосферы.
Выбор оптимальной стратегии здесь также может проводиться по величине математического ожидания выигрыша.
Рассмотренные задачи, по существу, являются вариантами (частными случаями) одной общей задачи, суть которой состоит в обосновании мер по обеспечению радиационной безопасности с учетом стохастической природы факторов, определяющих формирование и степень опасности радиационной обстановки.
С помощью теории игр со случайными ходами может быть решена и иная задача, принципиально отличающаяся по своей постановке: по обоснованию условий, определяемых стохастическими факторами, применительно к которым целесообразно проводить оценку радиационного воздействия и разработку мер по обеспечению радиационной безопасности.
При решении этой задачи учитываются две группы случайных факторов: факторы, характеризующие метеоусловия, и факторы, характеризующие исходные события возникновения и развития аварии. В связи с этим реализация стратегий с обеих сторон определяется вероятностными законами. Задача рассматривается в рамках игры, характеризующейся только случайными ходами. В качестве интегрального показателя выигрыша, численные значения которого, как и в предыдущих случаях, являются элементами игровой матрицы, может быть использован уровень радиационного риска.
В данной задаче, в отличие от предыдущей, следует предусматривать выбор оптимальных стратегий обеих сторон. Методика выбора остается прежней, то есть сводится к определению и анализу математических ожиданий величины интегрального показателя. Совокупность двух выбранных значений этих показателей дает возможность однозначно ответить на поставленный в задаче вопрос и сформулировать те условия, применительно к которым следует проводить анализ радиационной обстановки, оценку радиационного воздействия и разработку мер по обеспечению радиационной безопасности.
В заключение необходимо отметить, что нами сделана лишь попытка рассмотреть возможные пути использования теории игр со случайными ходами, методы статистических решений для целей анализа радиационной опасности, возникающей в тех или иных ситуациях, и выработки адекватных мер по обеспечению безопасной жизнедеятельности населения и работы персонала объектов с ядерными технологиями. Целесообразно дальнейшее совершенствование и развитие методов теории игр и статистических решений применительно к решению задач по информационно-интеллектуальной поддержке процессов принятия решений при управлении радиационным риском и обеспечении радиационной безопасности.