
- •Глава 1. Безопасность и риск 6
- •Глава 1. Безопасность и риск Введение
- •1.1. Основные определения и понятия в оценке экологического риска
- •1.2. Классификация рисков
- •1.3. Уровни риска, обусловленные разными опасностями
- •1.4. Уровни индивидуального риска
- •1.5. Профессиональный риск
- •1.6. Оценка риска с учётом ущерба
- •1.7. Концепция и критерии приемлемости риска
- •1.7.1. Экономические факторы приемлемости риска
- •1.7.2. Социальные факторы
- •1.7.3. Психологические факторы
- •1.8. Количественные оценки рисков
- •Глава 2. Оценка опасностей и риска аварий техногенных систем Введение
- •2.1. Опасность и источники опасности в сфере природопользования и экологии
- •2.2. Техногенные аварии и катастрофы
- •2.3. Медленные техногенные воздействия
- •2.4. Источники экологической опасности
- •2.5. Технические и техногенные системы
- •2.6. Факторы техногенной опасности и анализ опасностей
- •2.6.1. Факторы техногенной опасности
- •2.6.2. Предварительный анализ опасностей (Стадия I) (Хенли э.Дж., Кумамото х., 1984)
- •2.6.3. Выявление последовательности опасных ситуаций (Стадия II) (Хенли э.Дж, Кумамото х., 1984)
- •2.6.4. Анализ последствий (Стадия III) (Хенли э.Дж., Кумамото х., 1984)
- •2.7. Построение дерева отказов
- •2.8. Основные символы, используемые при построении дерева отказов
- •2.8.1. Символы событий
- •2.8.2. Логические символы
- •2.8.3. Понятия, используемые при описании метода дерева отказов
- •2.9. Общая методология построения дерева отказов
- •2.10. Построение дерева отказов при помощи таблиц решений
- •2.11. Логический анализ деревьев отказов
- •2.11.1. Аппарат логического анализа
- •2.11.2. Преобразование логических выражений методом карт
- •2.11.3. Упрощение выражений с помощью карт
- •2.12.2. Теоремы сложения вероятностей
- •2.12.3. Теорема умножения вероятностей
- •2.12.4. Формула полной вероятности
- •2.12.5. Теорема Бейеса
- •2.12.6. Надёжность
- •2.12.7. Человеческий фактор в надёжности техногенных систем
- •2.12.7.1. Психофизиологические характеристики человека
- •2.12.7.2. Влияние факторов внешней среды и условий труда на состояние человека
- •2.12.7.3. Показатели надёжности оператора
- •2.12.8. Определение коэффициентов готовности
- •2.12.9. Количественный анализ затраты/выгода с использованием деревьев отказов
- •2.13. Техногенные аварии, возникающие при работе с радиоизотопными устройствами
- •2.13.1. Радиоизотопные устройства
- •2.13.2. Опасные и вредные производственные факторы при работе с радиоизотопными устройствами
- •2.13.3. Методы анализа причин и последствий радиационных аварий
- •2.13.4. Логические деревья отказов радиоизотопных устройств и вычисление величины риска радиационных аварий
- •Контрольные вопросы и задачи
- •Литература
- •Термины и определения
2.12.8. Определение коэффициентов готовности
Для вычисления надёжности систем и риска аварий, как мы видели в предыдущих разделах необходимо знать надёжность элементов, находящихся в ветвях деревьев отказов.
Уже говорилось о том, что показатели надёжности элементов могут быть определены путём испытания большого количества однотипных элементов или длительных многократных испытаний небольшого количества элементов и статистической обработки результатов испытаний. Эти методы широко используются для определения надёжности в электронике, радиотехнике, системах коммуникаций, в которых используется большое количество однотипных элементов (транзисторов, резисторов, конденсаторов и т.д.).
Для промышленных систем самого разнообразного характера, состоящих из сравнительно небольшого числа однотипных элементов и большого числа единичных элементов и узлов (например, электромотор, насос, клапан, охладитель и т., и т.д.) разработан и используется метод определения коэффициентов готовности (неготовности) и вычисления по ним надёжности этих элементов и узлов.
Речь идет о восстанавливаемых элементах, которые работают в режиме неоднократного повторения циклов работы «отказ – ремонт – работа – отказ» и т.д. Отказ любого компонента системы приводит в лучшем случае к остановке работы, а в худшем, как мы видели из рассмотренных ранее примеров, к аварии.
Коэффициент готовности kг(t) в момент времени t есть вероятность того, что элемент является исправным в этот момент. Коэффициент готовности равен числу исправных элементов в момент времени t, делённому на общее число элементов данной системы (Хенли Э.Дж., Кумамото Х., 1984)
kг(t)=
,
(2.12.65)
где Nисп(t) – число исправных элементов в момент времени t, N0(t) – общее число элементов, i=1,2,3,…n.
Пример: Предположим,
что число исправных элементов равно 8,
а общее число элементов – 10. Тогда
коэффициент готовности в соответствии
с уравнением(2.12.65) определится как
kг(t)=
=0,8.
Коэффициент неготовности (простоя) Q(t) – есть вероятность того, что элемент находится в состоянии отказа в момент времени t и равен числу отказавших элементов, делённому на общее число элементов:
Q(t)=
,
(2.12.66)
где Nпр(t) – число простаивающих (отказавших) элементов.
Коэффициент неготовности Q(t) для рассматриваемого примера согласно уравнению (2.1.66) в этом случае будет Q(t)=0,2.
Значения коэффициентов готовности kг могут быть рассчитаны на основе методов теории надёжности. Эти методы дают хорошие результаты для радиотехнических и электронных устройств и систем. Для оценки надёжности конструкционных элементов не всегда имеются необходимые исходные данные. Такие данные могут быть получены на основе сведений по эксплуатации установок, получаемых путём регистрации основных показателей в эксплуатационном журнале установки. Форма ведения журнала и регистрации необходимых данных приведена в табл. 2.18.
Коэффициенты готовности элементов установки за выбранный период времени•определяются по формуле
,
(2.12.67)
где чистое время τ(t) работы установки за указанный период времени t вычисляются по формуле
τ(t)=
(2.12.68)
с использованием данных 4-го столбца таблицы 2.18.
Таблица 2.18
Журнал эксплуатации установки
№ п/п |
Характерные этапы эксплуатации установки |
Год, месяц, день, час |
Время рабо-ты |
Время на ремонтно-профилак-тические работы |
Время на устранение отказа (аварийные работы) |
Время на оста-новку |
Причина, характер и после-дствия отказа |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1 |
Пущена в эксплуатацию |
t1 |
|
|
|
|
|
2 |
Начаты ремонтно-профилактические работы (РПР) |
t2 |
t2- t1 |
|
|
|
|
3 |
Окончание РПР, начало эксплуатации |
t3 |
– |
t3- t2 |
|
|
|
4 |
Отказ (авария), начало ремонта |
t4 |
t4- t3 |
|
|
|
|
5 |
Окончание аварийных работ, начало эксплуатации |
t5 |
– |
– |
t5- t4 |
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
6 |
Остановка для профилактических работ |
t6 |
t6- t5 |
|
|
|
|
7 |
Начало эксплуатации |
t7 |
– |
– |
– |
t7- t6 |
|
8 |
Продолжение записей режимов работы |
|
|
|
|
|
|
Примечания: 1 – Под ремонтно-профилактическими работами подразумеваются все плановые и капитальные ремонты, а также любые профилактические мероприятия, требующие прекращения производственного процесса;
2 – Под отказом понимается любой незапланированный выход из строя одной из подсистем, как приведшей, так и на приведшей к аварии.
Продолжительность ликвидации отказа аварий вычисляется по данным 6-го столбца табл. 2.18 по формуле:
.
(2.12.69)
Для оценки безопасности технологических процессов или технических устройств по методу статистической обработки данных по авариям необходимо такие данные иметь за несколько лет по рассматриваемому классу устройств.