
- •Экзаменационные вопросы по физике
- •2.Закон Кулона.
- •3. Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции.
- •4. Графическое изображение электростатического поля. Поток вектора напряженности.
- •5. Электрический диполь. Поле диполя.
- •7. Расчет напряженности электростатического поля бесконечной плоскости.
- •10. Потенциал электростатического поля.
- •11.Связь потенциала с напряженностью электростатического поля.
- •13.Поляризованность вещества. Поле плоского конденсатора с диэлектриком. Диэлектрическая проницаемость вещества.
- •14.Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике.
- •15.Сегнетоэлектрики. Зависимость поляризованности от напряженности в них.
- •20.Энергия системы неподвижных точечных зарядов.
- •23.Энергия электростатического поля. Объемная плотность энергии.
- •25.Сторонние силы. Электродвижущая сила, напряжение.
- •30. Закон Ома для неоднородного участка цепи. Следствия из него.
- •34.Ионизация газов. Несамостоятельный газовый разряд.
- •35.Самостоятельный газовый разряд, его типы и применение.
- •37.Магнитное поле. Опыты Эрстеда. Магнитный момент витка с током.
- •38.Вектор магнитной индукции. Его связь с магнитной напряженностью.
- •39.Графическое изображение магнитного поля. Отличие линий магнитного поля от линий электростатического поля.
- •40.Закон Био-Савара-Лапласа. Магнитное поле прямого тока.
- •42.Взаимодействие проводников с током. Закон Ампера.
- •43.Магнитное поле движущегося заряда
- •44.Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •45.Движение заряженных частиц в магнитном поле. Ускорители элементарных частиц.
- •47.Циркуляция вектора магнитной индукции. Ее сравнение с циркуляцией напряженности электростатического поля.
- •48.Магнитный поток. Теорема Гаусса для магнитного поля.
- •49.Работа по перемещению проводника и контура с током в магнитном поле.
- •50.Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- •51.Вывод закона Фарадея из закона сохранения энергии.
- •52.Индуктивность контура. Самоиндукция. Э.Д.С. Самоиндукции.
- •53.Явление взаимной индукции. Принцип работы трансформатора.
- •54.Энергия магнитного поля. Плотность энергии магнитного поля.
- •55.Магнетики. Молекулярные токи. Магнитные моменты атомов.
- •57.Природа ферромагнетизма. Свойства ферромагнетиков.
- •58.Напряженность магнитного поля. Магнитная проницаемость вещества.
- •59.Типы жидких кристаллов, их поведение в электрическом и магнитном полях. Применение жидких кристаллов.
- •60.Вихревое электрическое поле.
- •61.Ток смещения.
- •65.Вынужденные колебания в электрических цепях.
- •66.Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны
- •67.Энергия и импульс электромагнитных волн. Вектор Умова-Пойнтинга.
- •68.Излучение диполя. Применение электромагнитных волн.
5. Электрический диполь. Поле диполя.
Электрический диполь — система двух равных по модулю разноименных точечных зарядов, расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля.
Вектор,
направленный по оси диполя (прямой,
проходящей через оба заряда) от
отрицательного заряда к положительному
и равный расстоянию между ними,
называется плечом диполя l.
Вектор
,совпадающий
по направлению с плечом диполя и
равный произведению заряда
|Q| на плечо l, называется электрическим моментом диполя р или дипольным моментом.
Согласно принципу суперпозиции, напряженность Е поля диполя в произвольной точке
Е=Е+ + Е-,
где Е+ и Е- — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.
1. Напряженность поля на оси диполя.
2. Напряженность поля на продолжении диполя.
6.Теорема Гаусса для электростатического поля в вакууме.
Рассчитаем поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность. Выбираем точечный заряд q, находящийся в ее центре,
По теореме Гаусса это справедливо для замкнутой поверхности любой формы.
Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.
Таким
образом, для поверхности любой формы,
если она замкнута и заключает в себя
точечный заряд q,
поток
вектора Е равен q/0,
Следовательно,
Формула
(81.2) выражает теорему Гаусса для
электростатического поля в вакууме:
поток вектора напряженности
электростатического поля в вакууме
сквозь произвольную замкнутую поверхность
равен алгебраической сумме заключенных
внутри этой поверхности зарядов,
деленной на 0.
Если заряды «размазаны» с некоторой
объемной
плотностью =dQ/dV,
то суммарный заряд
и
7. Расчет напряженности электростатического поля бесконечной плоскости.
Бесконечная плоскость заряжена с постоянной поверхностной плотностью =dq/dS (заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. Выбираем замкнутую поверхность в виде цилиндра, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей.
Так как образующие цилиндра параллельны линиям напряженности (cos=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю ФЕ=0, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с Е), т.е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен q=S. Согласно теореме Гаусса, 2ES = S/0, откуда E=/(20).
Вывод: напряженность не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.
8. Расчет напряженности электростатического поля двух бесконечных параллельных разноименно заряженных плоскостей.
9. Циркуляция вектора напряженности электростатического поля.
Если в электростатическом поле точечного заряда q из точки 1 в точку 2 вдоль произвольной траектории перемещается другой точечный заряд q0, то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемещении dl равна
Работа при перемещении заряда q0 из точки 1 в точку 2 не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы — консервативными.
Работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т.е.
Если в качестве заряда, переносимого в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работа сил поля на пути dl равна dA=Еdl, тогда
Интеграл
называется
циркуляцией вектора напряженности.
Следовательно, циркуляция вектора
напряженности электростатического
поля вдоль любого замкнутого контура
равна нулю. Из обращения в нуль
циркуляции вектора Е следует, что линии
напряженности электростатического
поля не могут быть замкнутыми, они
начинаются и кончаются на зарядах или
же уходят в бесконечность.