
- •Экзаменационные вопросы по физике
- •2.Закон Кулона.
- •3. Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции.
- •4. Графическое изображение электростатического поля. Поток вектора напряженности.
- •5. Электрический диполь. Поле диполя.
- •7. Расчет напряженности электростатического поля бесконечной плоскости.
- •10. Потенциал электростатического поля.
- •11.Связь потенциала с напряженностью электростатического поля.
- •13.Поляризованность вещества. Поле плоского конденсатора с диэлектриком. Диэлектрическая проницаемость вещества.
- •14.Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике.
- •15.Сегнетоэлектрики. Зависимость поляризованности от напряженности в них.
- •20.Энергия системы неподвижных точечных зарядов.
- •23.Энергия электростатического поля. Объемная плотность энергии.
- •25.Сторонние силы. Электродвижущая сила, напряжение.
- •30. Закон Ома для неоднородного участка цепи. Следствия из него.
- •34.Ионизация газов. Несамостоятельный газовый разряд.
- •35.Самостоятельный газовый разряд, его типы и применение.
- •37.Магнитное поле. Опыты Эрстеда. Магнитный момент витка с током.
- •38.Вектор магнитной индукции. Его связь с магнитной напряженностью.
- •39.Графическое изображение магнитного поля. Отличие линий магнитного поля от линий электростатического поля.
- •40.Закон Био-Савара-Лапласа. Магнитное поле прямого тока.
- •42.Взаимодействие проводников с током. Закон Ампера.
- •43.Магнитное поле движущегося заряда
- •44.Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •45.Движение заряженных частиц в магнитном поле. Ускорители элементарных частиц.
- •47.Циркуляция вектора магнитной индукции. Ее сравнение с циркуляцией напряженности электростатического поля.
- •48.Магнитный поток. Теорема Гаусса для магнитного поля.
- •49.Работа по перемещению проводника и контура с током в магнитном поле.
- •50.Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- •51.Вывод закона Фарадея из закона сохранения энергии.
- •52.Индуктивность контура. Самоиндукция. Э.Д.С. Самоиндукции.
- •53.Явление взаимной индукции. Принцип работы трансформатора.
- •54.Энергия магнитного поля. Плотность энергии магнитного поля.
- •55.Магнетики. Молекулярные токи. Магнитные моменты атомов.
- •57.Природа ферромагнетизма. Свойства ферромагнетиков.
- •58.Напряженность магнитного поля. Магнитная проницаемость вещества.
- •59.Типы жидких кристаллов, их поведение в электрическом и магнитном полях. Применение жидких кристаллов.
- •60.Вихревое электрическое поле.
- •61.Ток смещения.
- •65.Вынужденные колебания в электрических цепях.
- •66.Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны
- •67.Энергия и импульс электромагнитных волн. Вектор Умова-Пойнтинга.
- •68.Излучение диполя. Применение электромагнитных волн.
49.Работа по перемещению проводника и контура с током в магнитном поле.
Н
а
проводник с током в магнитном поле
действуют силы, определяемые законом
Ампера. Если проводник не закреплен, то
под действием силы Ампера он будет в
магнитном поле перемещаться.
Следовательно, магнитное поле совершает
работу по перемещению проводника с
током.
Для определения этой работы рассмотрим проводник длиной l с током I, помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. При указанных на рис. 177 направлениях тока и поля сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера, равна F=IBl.
Под действием этой силы проводник переместится параллельно самому себе на отрезок dх из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна dA=Fdx=IBldx =IBdS= IdФ, так как ldx=dS— площадь, пересекаемая проводником при его перемещении в магнитном поле, ВdS=dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом, dA=IdФ, т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.
В
ычислим
работу по перемещению замкнутого
контура с постоянным током I
в магнитном поле. Предположим, что
контур М
перемещается
в плоскости чертежа и в результате
бесконечно малого перемещения займет
положение М',
изображенное
на рис. 178 штриховой линией. Направление
тока в контуре (по часовой стрелке) и
магнитного поля (перпендикулярно
плоскости чертежа — за чертеж) указано
на рисунке. Контур М
мысленно
разобьем на два соединенных своими
концами проводника: ABC
и CDA.
Работа dA, совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников АВС (dA1) и СDA (dА2), т. е. dA=dA1+dA2.
Силы, приложенные к участку CDA контура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работа dA2>0. Согласно (121.1), эта работа равна произведению силы тока I в контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Следовательно, dA2= I(dФ0+dФ2).
Силы, действующие на участок ЛВС контура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работа dA1<0. Проводник ЛВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно, dA1=I(dФ0+dФ1).
Получим выражение для элементарной работы: dA=I(dФ2 -dФ1), где dФ2-dФ1=dФ'— изменение магнитного потока через площадь, ограниченную контуром с током. Таким образом, dA=IdФ'.
Проинтегрировав выражение, определим работу, совершаемую силами Ампера, при конечном произвольном перемещении контура в магнитном поле: A=IФ, т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром.