
- •Экзаменационные вопросы по физике
- •2.Закон Кулона.
- •3. Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции.
- •4. Графическое изображение электростатического поля. Поток вектора напряженности.
- •5. Электрический диполь. Поле диполя.
- •7. Расчет напряженности электростатического поля бесконечной плоскости.
- •10. Потенциал электростатического поля.
- •11.Связь потенциала с напряженностью электростатического поля.
- •13.Поляризованность вещества. Поле плоского конденсатора с диэлектриком. Диэлектрическая проницаемость вещества.
- •14.Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике.
- •15.Сегнетоэлектрики. Зависимость поляризованности от напряженности в них.
- •20.Энергия системы неподвижных точечных зарядов.
- •23.Энергия электростатического поля. Объемная плотность энергии.
- •25.Сторонние силы. Электродвижущая сила, напряжение.
- •30. Закон Ома для неоднородного участка цепи. Следствия из него.
- •34.Ионизация газов. Несамостоятельный газовый разряд.
- •35.Самостоятельный газовый разряд, его типы и применение.
- •37.Магнитное поле. Опыты Эрстеда. Магнитный момент витка с током.
- •38.Вектор магнитной индукции. Его связь с магнитной напряженностью.
- •39.Графическое изображение магнитного поля. Отличие линий магнитного поля от линий электростатического поля.
- •40.Закон Био-Савара-Лапласа. Магнитное поле прямого тока.
- •42.Взаимодействие проводников с током. Закон Ампера.
- •43.Магнитное поле движущегося заряда
- •44.Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •45.Движение заряженных частиц в магнитном поле. Ускорители элементарных частиц.
- •47.Циркуляция вектора магнитной индукции. Ее сравнение с циркуляцией напряженности электростатического поля.
- •48.Магнитный поток. Теорема Гаусса для магнитного поля.
- •49.Работа по перемещению проводника и контура с током в магнитном поле.
- •50.Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- •51.Вывод закона Фарадея из закона сохранения энергии.
- •52.Индуктивность контура. Самоиндукция. Э.Д.С. Самоиндукции.
- •53.Явление взаимной индукции. Принцип работы трансформатора.
- •54.Энергия магнитного поля. Плотность энергии магнитного поля.
- •55.Магнетики. Молекулярные токи. Магнитные моменты атомов.
- •57.Природа ферромагнетизма. Свойства ферромагнетиков.
- •58.Напряженность магнитного поля. Магнитная проницаемость вещества.
- •59.Типы жидких кристаллов, их поведение в электрическом и магнитном полях. Применение жидких кристаллов.
- •60.Вихревое электрическое поле.
- •61.Ток смещения.
- •65.Вынужденные колебания в электрических цепях.
- •66.Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны
- •67.Энергия и импульс электромагнитных волн. Вектор Умова-Пойнтинга.
- •68.Излучение диполя. Применение электромагнитных волн.
38.Вектор магнитной индукции. Его связь с магнитной напряженностью.
Вектор магнитной индукции В характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения.
Магнитное поле макротоков описывается вектором напряженности Н. Для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим соотношением: В=0Н, где 0 — магнитная постоянная, — безразмерная величина — магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков Н усиливается за счет поля микротоков среды. Сравнивая векторные характеристики электростатического (Е и D) и магнитного (В и Н) полей, укажем, что аналогом вектора напряженности электростатического поля Е является вектор магнитной индукции В, так как векторы Е и В определяют силовые действия этих полей и зависят от свойств среды. Аналогом вектора электрического смещения D является вектор напряженности Н магнитного поля.
39.Графическое изображение магнитного поля. Отличие линий магнитного поля от линий электростатического поля.
Так как магнитное поле является силовым, то его, по аналогии с электрическим, изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, ввинчиваемого по направлению тока, вращается в направлении линий магнитной индукции.
Линии магнитной индукции можно «проявить» с помощью железных опилок, намагничивающихся в исследуемом поле и ведущих себя подобно маленьким магнитным стрелкам. На рис. 162, а показаны линии магнитной индукции поля кругового тока, на рис. 162, б — линии магнитной индукции поля соленоида (соленоид — равномерно намотанная на цилиндрическую поверхность проволочная спираль, по которой течет электрический ток).
Линии магнитной индукции всегда замкнуты и охватывают проводники с током. Этим они отличаются от линий напряженности электростатического поля, которые являются разомкнутыми (начинаются на положительных зарядах и кончаются на отрицательных).
На рис. 163 изображены линии магнитной индукции полосового магнита; они выходят из северного полюса и входят в южный. Вначале казалось, что здесь наблюдается полная аналогия с линиями напряженности электростатического поля и полюсы магнитов играют роль магнитных «зарядов» (магнитных монополей). Опыты показали, что, разрезая магнит на части, его полюсы разделить нельзя, т. е. в отличие от электрических зарядов свободные магнитные «заряды» не существуют, поэтому линии магнитной индукции не могут обрываться на полюсах. В дальнейшем было установлено, что внутри полосовых магнитов имеется магнитное поле, аналогичное полю внутри соленоида, и линии магнитной индукции этого магнитного поля являются продолжением линий магнитной индукции вне магнита. Таким образом, линии магнитной индукции магнитного поля постоянных магнитов являются также замкнутыми.
До сих пор мы рассматривали макроскопические токи, текущие в проводниках. Однако, согласно предположению французского физика А. Ампера (1775—1836), в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в магнитных полях макротоков. Например, если вблизи какого-то тела поместить проводник с током (макроток), то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле.