Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВИБРАЦИЯ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.19 Mб
Скачать

2.2. Свободные колебания

2.2.1. Общие сведения о свободных колебаниях

Известно, что в ряде случаев тело, получившее некоторое начальное возмущение, после удаления причины этого возмущения продолжает совершать колебания. Эти свободные колебания играют важнейшую роль. Поведение системы при свободных колебаниях характеризует ее «динамическую индивидуальность», которая определяет поведение системы при всех других условиях.

Рассмотрим некоторые примеры возникновения свободных колебаний. После того как по струне рояля ударяет один из молоточков, струна некоторое время продолжает самостоятельно совершать колебания - свободные колебания. Это становится возможным, во-первых, потому, что струна имеет массу и при движении накапливает кинетическую энергию, а во-вторых, потому, что при отклонении от положения равновесия струна накапливает потенциальную энергию.

Рис. 12. Исследование свободных колебаний

Точно так же обычный маятник может совершать колебания благодаря тому, что, во-первых, его гиря обладает массой и, во-вторых, при подъеме гири относительно своего низшего положения она накапливает потенциальную энергию.

Идеальным объектом исследования свободных колебаний может служить подвешенная за один конец велосипедная цепь. Подвесим цепь к кулисному механизму (рис. 12).

При вращении кривошипа точка подвеса перемещается в горизонтальном направлении по синусоидальному (т. е. гармоническому) закону. Если при этом регулировать скорость двигателя, приводящего механизм в движение, то можно изменять частоту колебаний точки подвеса. При очень низких частотах цепь будет просто перемещаться из стороны в сторону, сохраняя более или менее вертикальное положение. Однако при возрастании частоты наступает момент, когда цепь начинает интенсивно раскачиваться с частотой, равной частоте возбуждения (рис. 13, а). Эти колебания не являются свободными, так как цепь находится под действием вибрационной нагрузки. Но если внезапно остановить двигатель, т. е. удалить внешнюю нагрузку, то последующие колебания будут свободными и при этом совершенно не такими, как при случайно заданных начальных условиях. Эти колебания будут затухать, но все время будут сохраняться форма и частота колебаний цепи. Иначе говоря, характер движения с течением времени остается неизменным. При постепенном увеличении частоты колебаний механизма можно возбудить колебания, во время которых цепь принимает форму, показанную на рис. 13, б. После резкой остановки точки подвеса такие колебания постепенно затухают, сохраняя при этом свою частоту и форму. При еще более высоких частотах можно получить другие формы колебаний (рис. 13, в, г).

Таким образом, цепь обладает рядом форм свободных колебаний, которые называются собственными формами. Каждой собственной форме соответствуют определенная частота и скорость затухания колебаний.

Собственные частоты системы (разумеется, любой системы, а не только подвешенной цепи), ее собственные формы и скорости затухания являются индивидуальными характеристиками системы; они не связаны ни с какими внешними воздействиями.

Рис. 13. Исследование свободных колебаний

Экспериментальные исследования показывают, что увеличение массы системы приводит к снижению, а увеличение жесткости - к возрастанию всех ее собственных частот. При этом различные частоты изменяются в разной степени.

Собственные формы колебаний системы обладают следующими свойствами: любая возможная конфигурация системы может быть представлена в виде суперпозиции (наложения) некоторого числа таких конфигураций, каждая из которых соответствует одной собственной форме колебаний. Таким образом, если задать системе некоторую статическую деформацию, а затем освободить систему, то возникнут свободные колебания по всем соответствующим формам; каждое из таких колебаний будет происходить с соответствующей собственной частотой независимо от остальных движений. Любая комбинация двух собственных форм колебаний также является собственной формой.

Теперь перейдем к рассмотрению такой особенности свободных колебаний, как их затухание.

Эффект затухания колебаний объясняется наличием трения; иногда его называют демпфированием. Звук колокола слышен в течение длительного времени после удара, так как нет значительных сил трения, которые привели бы к рассеянию механической энергии за счет ее перехода в тепловую энергию, а рассеяние энергии за счет излучения звуковых волн происходит весьма медленно. С другой стороны, если раскачать кузов автомобиля, а затем отпустить его, то колебания быстро затухнут. Это объясняется действием специально установленных демпферов.

Рассеяние энергии имеет место в любой колебательной системе. Известно, например, что при вибрациях самолета часть энергии рассеивается в панелях обшивки за счет трения в заклепочных соединениях. Значительным демпфированием должны обладать конструкции зданий, что очень важно с точки зрения поведения здания при землетрясении.

Иногда, если это особенно желательно, можно искусственно вводить трение; так, например, на автомобилях устанавливают демпферы колебаний. Существует много способов искусственного введения трения в систему. Это может быть осуществлено, например, электрическим способом, но чаще используются чисто механические методы демпфирования. Перечислим основные из них.

  1. Вязкое трение в жидкости. Простейшим примером является гидравлический демпфер, который состоит из поршня, перемещающегося в цилиндре; трение возникает при перетекании жидкости (часто вместо жидкости используется воздух) в тонком зазоре между поршнем и стенкой цилиндра. В некоторых других устройствах используются лопасти, движущиеся в масле или силиконовой жидкости.

  2. Материалы с высоким уровнем рассеяния энергии. При ударе по "колоколу", изготовленному из специального сплава меди и марганца, вместо звона слышится глухой стук. В амортизирующих опорах часто используют резину; это связано с ее высокими демпфирующими характеристиками. Лопатки компрессоров иногда изготавливают из волокнистых полимерных материалов, обладающих значительным внутренним трением.

  3. Демпфирующие покрытия панелей. Существуют такие материалы, нанесение которых на поверхность металлических панелей приводит к тому, что при ударе по панели вместо характерного для металлов звука слышится глухой стук.

  4. Сухое трение, возникающее при взаимном скольжении поверхностей в процессе вибрации. Этот способ используется, например, в некоторых компрессорах газовых турбин, где осуществлено шарнирное крепление лопаток к ротору. Кроме того, сухое трение возникает, когда в некоторые пружины с целью демпфирования вставляются пучки металлической проволоки.

  5. Слоистые конструкции. Панели, состоящие из тонких металлических листов, разделенных тонким слоем вязкоупругого материала, обладают хорошими звукоизолирующими свойствами.

  6. Пенопластовые или резиновые прокладки. Например, электрические лампочки, упакованные в такие прокладки, можно без всякого риска бросать с большой высоты на твердый пол.

Таким образом, существуют два вида демпфирования: искусственно вводимое и связанное с естественными силами трения. Если искусственно вводимое трение чаще всего допускает теоретическую оценку, то естественное трение, как правило, не поддается расчету и должно определяться экспериментально.

Появление трения или его увеличение не приводит к заметным изменениям частоты и формы собственных колебаний. Поэтому исследование свободных колебаний вначале удобно проводить без учета трения.