
- •Гармонические колебания
- •Колебательные процессы и их характеристики
- •Способы описания и изображения колебаний
- •Уравнение гармонических колебаний
- •Механические гармонические колебания
- •Колебательный контур
- •Гармонический и ангармонический осциллятор. Физический смысл спектрального разложения
- •Сложение гармонических колебаний
- •Свободные затухающие колебания
- •Вынужденные механические колебания
- •Вынужденные электрические колебания
- •Волновое уравнение
- •Кинематика волновых процессов, нормальные моды. Групповая скорость
- •Стоячие волны
- •Интерференция монохроматических волн
- •Интерференция в тонких плёнках
- •Принцип Гюйгенса-Френеля.
- •Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Френеля на круговые отверстия
- •Дифракция Фраунгофера на одной щели
- •Дифракция на одномерной решётке.
- •Характеристика теплового излучения.
- •Законы Кирхгофа, Стефана-Больцмана, Вина.
- •Квантовая гипотеза и формула Планка.
- •Внешний фотоэффект. Уравнение Эйнштейна.(380)
- •Эффект Комптона.
- •Модель атома Резерфорда.
- •Спектральные закономерности.
- •Теория Бора. Спектр атома водорода. Недостатки теории Бора. (393)
- •Корпускулярно волновой дуализм микрочастиц. Гипотеза де Бройля.
- •Соотношение неопределённостей.
- •Волновая функция. Уравнение Шредингера.
- •Частица в одномерной потенциальной яме.(410)
- •Решение уравнения Шредингера для атома водорода.
- •Последовательность заполнения электронных оболочек. Периодическая система.
- •Рентгеновские спектры.(429)
- •Термодинамические параметры.(82)
- •Уравнение состояния идеального газа. Законы идеального газа.(84-85)
- •Распределение молекул газа по скоростям и энергиям теплового движения.(88)
- •Распределение Больцмана.(90)
- •Распределение Максвелла-Больцмана.
- •Основное уравнение молекулярно-кинетической теории газов. (86)
- •Внутренняя энергия системы.(100)
- •Работа и теплота.(102)
- •Первое начало термодинамики.(101)
- •Теплоёмкость. Уравнение Майера.(103)
- •Круговой процесс. Цикл Карно. (115)
- •Обратимые и необратимые процессы. Второе начало термодинамики.(108,111)
- •Энтропия.
- •Третье начало термодинамики.
- •Термодинамические функции состояния.
- •Силы и потенциальная энергия межмолекулярного взаимодействия.
- •Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.(119)
- •Внутренняя энергия реального газа.(122)
- •Фазовые равновесия и фазовые превращения.
- •Фазовые переходы 1 и 2 рода.(141)
- •Диаграмма состояния. Тройная точка.(142)
- •Конденсированное состояние.(144)
- •Теплопроводность.(94)
- •Диффузия.(94)
- •Диффузия в газах, жидкостях и твёрдых телах.
- •Вязкость. Средняя длина свободного пробега(91, 95).
Дифракция Фраунгофера на одной щели
Немецкий физик И. Фраунгофер (1787-1826) рассмотрел дифракцию плюсках световых волн, или дифракцию в параллельных лучах. Дифракция Фраунгофера, имеющая большое практическое значение, наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию. Чтобы этот тип дифракции осуществить, достаточно точечный источник света поместить в фокусе собирающей линзы, а дифракционную картину исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием.
Дифракция на одномерной решётке.
Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку - систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Рассматривая дифракцию Фраунгофера на щели, мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели параллельно самой себе влево или вправо не изменит дифракционной картины. Следовательно, если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, будут одинаковыми.
Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т. е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.
Рассмотрим дифракционную решетку. На рис. 262 для наглядности показаны только две соседние щели MN и CD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d = a + b называется постоянной (периодом) дифракционной решетки.
Характеристика теплового излучения.
Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких - преимущественно длинные (инфракрасные).
Тепловое излучение - практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в полость, ограниченную идеально отражающей оболочкой. С течением времени, в результате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать. Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает. Если в единицу времени тело больше излучает, чем поглощает (или наоборот), то температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возрастать) количество излучаемой телом энергии, пока, наконец, не установится равновесие. Все другие виды излучения неравновесны.
Количественной
характеристикой теплового излучения
служит спектральная плотность
энергетической светимости (излучательностн)
тела - мощность излучения с единицы
площади поверхности тела в интервале
частот единичной ширины: