
- •Гармонические колебания
- •Колебательные процессы и их характеристики
- •Способы описания и изображения колебаний
- •Уравнение гармонических колебаний
- •Механические гармонические колебания
- •Колебательный контур
- •Гармонический и ангармонический осциллятор. Физический смысл спектрального разложения
- •Сложение гармонических колебаний
- •Свободные затухающие колебания
- •Вынужденные механические колебания
- •Вынужденные электрические колебания
- •Волновое уравнение
- •Кинематика волновых процессов, нормальные моды. Групповая скорость
- •Стоячие волны
- •Интерференция монохроматических волн
- •Интерференция в тонких плёнках
- •Принцип Гюйгенса-Френеля.
- •Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Френеля на круговые отверстия
- •Дифракция Фраунгофера на одной щели
- •Дифракция на одномерной решётке.
- •Характеристика теплового излучения.
- •Законы Кирхгофа, Стефана-Больцмана, Вина.
- •Квантовая гипотеза и формула Планка.
- •Внешний фотоэффект. Уравнение Эйнштейна.(380)
- •Эффект Комптона.
- •Модель атома Резерфорда.
- •Спектральные закономерности.
- •Теория Бора. Спектр атома водорода. Недостатки теории Бора. (393)
- •Корпускулярно волновой дуализм микрочастиц. Гипотеза де Бройля.
- •Соотношение неопределённостей.
- •Волновая функция. Уравнение Шредингера.
- •Частица в одномерной потенциальной яме.(410)
- •Решение уравнения Шредингера для атома водорода.
- •Последовательность заполнения электронных оболочек. Периодическая система.
- •Рентгеновские спектры.(429)
- •Термодинамические параметры.(82)
- •Уравнение состояния идеального газа. Законы идеального газа.(84-85)
- •Распределение молекул газа по скоростям и энергиям теплового движения.(88)
- •Распределение Больцмана.(90)
- •Распределение Максвелла-Больцмана.
- •Основное уравнение молекулярно-кинетической теории газов. (86)
- •Внутренняя энергия системы.(100)
- •Работа и теплота.(102)
- •Первое начало термодинамики.(101)
- •Теплоёмкость. Уравнение Майера.(103)
- •Круговой процесс. Цикл Карно. (115)
- •Обратимые и необратимые процессы. Второе начало термодинамики.(108,111)
- •Энтропия.
- •Третье начало термодинамики.
- •Термодинамические функции состояния.
- •Силы и потенциальная энергия межмолекулярного взаимодействия.
- •Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.(119)
- •Внутренняя энергия реального газа.(122)
- •Фазовые равновесия и фазовые превращения.
- •Фазовые переходы 1 и 2 рода.(141)
- •Диаграмма состояния. Тройная точка.(142)
- •Конденсированное состояние.(144)
- •Теплопроводность.(94)
- •Диффузия.(94)
- •Диффузия в газах, жидкостях и твёрдых телах.
- •Вязкость. Средняя длина свободного пробега(91, 95).
Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.(119)
Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837—1923) вывел уравнение состояния реального газа. Ван-дер-Ваальсом в уравнение Клапейрона — Менделеева введены две поправки.
1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm, а Vm — b, где b — объем, занимаемый самими молекулами.
Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d, т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в расчете на одну молекулу.
2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.
(61.1)
где а — постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm — молярный объем.
Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):
(61.2)
Для произвольного количества вещества v газа (v=m/M) с учетом того, что V=vVm, уравнение Ван-дер-Ваальса примет вид
Внутренняя энергия реального газа.(122)
Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул (определяет внутреннюю энергию идеального газа, равную СVТ; см. § 53) и потенциальной энергии межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ (см. (61.1)):
Работа,
которая затрачивается для преодоления
сил притяжения, действующих между
молекулами газа, как известно из механики,
идет на увеличение потенциальной энергии
системы, т. е.
или
откуда
(постоянная интегрирования принята равной нулю). Знак минус означает, что молекулярные силы, создающие внутреннее давление р', являются силами притяжения (см. § 60). Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа
(63.1)
растет с повышением температуры и увеличением объема.
Если газ расширяется без теплообмена с окружающей средой (адиабатический процесс, т. е. Q=0) и не совершает внешней работы (расширение газа в вакуум, т. е. А=0), то на основании первого начала термодинамики (Q = (U2—U1)+ A) Получим, что
(63.2)
Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется.
Равенство (63.2) формально справедливо как для идеального, так и для реального газов, но физический смысл его для обоих случаев совершенно различен. Для идеального газа равенство U1=U2означает равенство температур (T1=T2), т. е. при адиабатическом расширении идеального газа в вакуум его температура не изменяется. Для реального газа из равенства (63.2), учитывая, что для моля газа
(63.3)
получаем
Так как V2> V1, то Т1 > Т2, т. е. реальный газ при адиабатическом расширении в вакуум охлаждается. При адиабатическом сжатии в вакуум реальный газ нагревается.