
- •Гармонические колебания
- •Колебательные процессы и их характеристики
- •Способы описания и изображения колебаний
- •Уравнение гармонических колебаний
- •Механические гармонические колебания
- •Колебательный контур
- •Гармонический и ангармонический осциллятор. Физический смысл спектрального разложения
- •Сложение гармонических колебаний
- •Свободные затухающие колебания
- •Вынужденные механические колебания
- •Вынужденные электрические колебания
- •Волновое уравнение
- •Кинематика волновых процессов, нормальные моды. Групповая скорость
- •Стоячие волны
- •Интерференция монохроматических волн
- •Интерференция в тонких плёнках
- •Принцип Гюйгенса-Френеля.
- •Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Френеля на круговые отверстия
- •Дифракция Фраунгофера на одной щели
- •Дифракция на одномерной решётке.
- •Характеристика теплового излучения.
- •Законы Кирхгофа, Стефана-Больцмана, Вина.
- •Квантовая гипотеза и формула Планка.
- •Внешний фотоэффект. Уравнение Эйнштейна.(380)
- •Эффект Комптона.
- •Модель атома Резерфорда.
- •Спектральные закономерности.
- •Теория Бора. Спектр атома водорода. Недостатки теории Бора. (393)
- •Корпускулярно волновой дуализм микрочастиц. Гипотеза де Бройля.
- •Соотношение неопределённостей.
- •Волновая функция. Уравнение Шредингера.
- •Частица в одномерной потенциальной яме.(410)
- •Решение уравнения Шредингера для атома водорода.
- •Последовательность заполнения электронных оболочек. Периодическая система.
- •Рентгеновские спектры.(429)
- •Термодинамические параметры.(82)
- •Уравнение состояния идеального газа. Законы идеального газа.(84-85)
- •Распределение молекул газа по скоростям и энергиям теплового движения.(88)
- •Распределение Больцмана.(90)
- •Распределение Максвелла-Больцмана.
- •Основное уравнение молекулярно-кинетической теории газов. (86)
- •Внутренняя энергия системы.(100)
- •Работа и теплота.(102)
- •Первое начало термодинамики.(101)
- •Теплоёмкость. Уравнение Майера.(103)
- •Круговой процесс. Цикл Карно. (115)
- •Обратимые и необратимые процессы. Второе начало термодинамики.(108,111)
- •Энтропия.
- •Третье начало термодинамики.
- •Термодинамические функции состояния.
- •Силы и потенциальная энергия межмолекулярного взаимодействия.
- •Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.(119)
- •Внутренняя энергия реального газа.(122)
- •Фазовые равновесия и фазовые превращения.
- •Фазовые переходы 1 и 2 рода.(141)
- •Диаграмма состояния. Тройная точка.(142)
- •Конденсированное состояние.(144)
- •Теплопроводность.(94)
- •Диффузия.(94)
- •Диффузия в газах, жидкостях и твёрдых телах.
- •Вязкость. Средняя длина свободного пробега(91, 95).
Энтропия.
Отношение количества теплоты Q полученной телом в изотермическом процессе называется приведённым количеством теплоты. U*=Q/T. Приведённое количество теплоты сообщённое телу на бесконечно малом участке для произв. процесса. В любом обратном круговом процессе: Q*= _________. Функция S является функцией состояния и является энтропией. На основании первого начала термодинамики:________________ Физический смысл имеет не сама энтропия, а её изменение показывает направление процесса стремящегося к равновесию или же нет. S0; = для обратимых процессов, для необратимых процессов. Если система совершает неравновесный переход из состояния 1 в состояние 2, то изменение энтропии:
Третье начало термодинамики.
Теорема Нернста-Планка: энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина.
Величина
АВ имеет вполне определённые значения
но положение его вдоль прямой параллельной
оси S
неопределённо и при T0
кривые 1 и 2 могут заканчиваться как в
одной точке С так и в разных точках В.
Теорема Нернста: При стремлении Т к 0
энтропия системы независимо от внешних
параметров определ. Её состояние
стремится к определённому конечному
значению которое в силу неопределённости
абсолютного значения энтропии =0. Кривые
1 и 2 сходятся в точке С. 3 начало
термодинамики не позволяет находить
абсолютное значение энтропии.
Термодинамические функции состояния.
P=P(T,V) уравнение состояния. 1) PV=RT; 2) dU=δQ-δA; dU=TdS-PdV; dS=δQ/T
Силы и потенциальная энергия межмолекулярного взаимодействия.
При рассмотрении реальных газов — газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях £ 10–9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.
В XX в., по мере развития представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависимость сил межмолекулярного взаимодействия от расстояния r между молекулами, где Fо и Fп — соответственно силы отталкивания и притяжения, a F — их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяжения — отрицательными. Элементарная работа dA силы F при увеличении расстояния между молекулами на dr совершается за счет уменьшения взаимной потенциальной энергии молекул, т. е.
(60.1)
Из анализа качественной зависимости потенциальной энергии взаимодействия молекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимодействия не действуют (r®¥), то П=0. При постепенном сближении молекул между, ними появляются силы притяжения (F<0), которые совершают положительную работу (dA=Fdr > 0). Тогда, согласно (60.1), потенциальная энергия взаимодействия уменьшается, достигая минимума при r= r0. При r < r0 с уменьшением r силы отталкивания (F>0) резко возрастают и совершаемая против них работа отрицательна (dA=Fdr<0). Потенциальная энергия начинает тоже резко возрастать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих молекул в состоянии устойчивого равновесия (r = r0) обладает минимальной потенциальной энергией.