
- •Гармонические колебания
- •Колебательные процессы и их характеристики
- •Способы описания и изображения колебаний
- •Уравнение гармонических колебаний
- •Механические гармонические колебания
- •Колебательный контур
- •Гармонический и ангармонический осциллятор. Физический смысл спектрального разложения
- •Сложение гармонических колебаний
- •Свободные затухающие колебания
- •Вынужденные механические колебания
- •Вынужденные электрические колебания
- •Волновое уравнение
- •Кинематика волновых процессов, нормальные моды. Групповая скорость
- •Стоячие волны
- •Интерференция монохроматических волн
- •Интерференция в тонких плёнках
- •Принцип Гюйгенса-Френеля.
- •Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Френеля на круговые отверстия
- •Дифракция Фраунгофера на одной щели
- •Дифракция на одномерной решётке.
- •Характеристика теплового излучения.
- •Законы Кирхгофа, Стефана-Больцмана, Вина.
- •Квантовая гипотеза и формула Планка.
- •Внешний фотоэффект. Уравнение Эйнштейна.(380)
- •Эффект Комптона.
- •Модель атома Резерфорда.
- •Спектральные закономерности.
- •Теория Бора. Спектр атома водорода. Недостатки теории Бора. (393)
- •Корпускулярно волновой дуализм микрочастиц. Гипотеза де Бройля.
- •Соотношение неопределённостей.
- •Волновая функция. Уравнение Шредингера.
- •Частица в одномерной потенциальной яме.(410)
- •Решение уравнения Шредингера для атома водорода.
- •Последовательность заполнения электронных оболочек. Периодическая система.
- •Рентгеновские спектры.(429)
- •Термодинамические параметры.(82)
- •Уравнение состояния идеального газа. Законы идеального газа.(84-85)
- •Распределение молекул газа по скоростям и энергиям теплового движения.(88)
- •Распределение Больцмана.(90)
- •Распределение Максвелла-Больцмана.
- •Основное уравнение молекулярно-кинетической теории газов. (86)
- •Внутренняя энергия системы.(100)
- •Работа и теплота.(102)
- •Первое начало термодинамики.(101)
- •Теплоёмкость. Уравнение Майера.(103)
- •Круговой процесс. Цикл Карно. (115)
- •Обратимые и необратимые процессы. Второе начало термодинамики.(108,111)
- •Энтропия.
- •Третье начало термодинамики.
- •Термодинамические функции состояния.
- •Силы и потенциальная энергия межмолекулярного взаимодействия.
- •Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.(119)
- •Внутренняя энергия реального газа.(122)
- •Фазовые равновесия и фазовые превращения.
- •Фазовые переходы 1 и 2 рода.(141)
- •Диаграмма состояния. Тройная точка.(142)
- •Конденсированное состояние.(144)
- •Теплопроводность.(94)
- •Диффузия.(94)
- •Диффузия в газах, жидкостях и твёрдых телах.
- •Вязкость. Средняя длина свободного пробега(91, 95).
Уравнение состояния идеального газа. Законы идеального газа.(84-85)
В
общем виде
Русский ученый Д. И. Менделеев (1834—1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем Vm. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярном газовой постоянной. Уравнению
(42.4)
удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона — Менделеева.
Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях (р0= 1,013×105 Па, T0=273,15 К, Vm=22,41×10–3 м3/моль): R=8,31 Дж/(моль×К).
От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона — Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем Vm, то при тех же условиях масса т газа займет объем V= (т/М)Vm, где М — молярная масса (масса одного моля вещества). Единица молярной массы — килограмм на моль (кг/моль). Уравнение Клапейрона — Менделеева для массы т газа
Распределение молекул газа по скоростям и энергиям теплового движения.(88)
По
молекулярно-кинетической теории, как
бы ни изменялись скорости молекул при
столкновениях, средняя квадратичная
скорость молекул массой т0 в
газе, находящемся в состоянии равновесия
при Т= const.
остается постоянной и равной
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равныеdv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, т. е.
откуда
Применяя методы теории вероятностей. Максвелл нашел функцию f(v) — закон о распределеня молекул идеального газа по скоростям:
Из (44.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).
Распределение Больцмана.(90)
(45.2)
Выражение (45.2) называется барометрической формулой. Она позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти высоту: Так как высоты обозначаются относительно уровня моря, где давление считается нормальным, то выражение (45.2) может быть записано в виде
(45.3)
где р — давление на высоте h.
Прибор для определения высоты над земной поверхностью называется высотомером (или альтиметром). Его работа основана на использовании формулы (45.3). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяжелее газ.
(45.5)
Выражение (45.5) называется распределением Больцмана для внешнего потенциального поля. Из вето следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.
Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.