
- •Гармонические колебания
- •Колебательные процессы и их характеристики
- •Способы описания и изображения колебаний
- •Уравнение гармонических колебаний
- •Механические гармонические колебания
- •Колебательный контур
- •Гармонический и ангармонический осциллятор. Физический смысл спектрального разложения
- •Сложение гармонических колебаний
- •Свободные затухающие колебания
- •Вынужденные механические колебания
- •Вынужденные электрические колебания
- •Волновое уравнение
- •Кинематика волновых процессов, нормальные моды. Групповая скорость
- •Стоячие волны
- •Интерференция монохроматических волн
- •Интерференция в тонких плёнках
- •Принцип Гюйгенса-Френеля.
- •Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Френеля на круговые отверстия
- •Дифракция Фраунгофера на одной щели
- •Дифракция на одномерной решётке.
- •Характеристика теплового излучения.
- •Законы Кирхгофа, Стефана-Больцмана, Вина.
- •Квантовая гипотеза и формула Планка.
- •Внешний фотоэффект. Уравнение Эйнштейна.(380)
- •Эффект Комптона.
- •Модель атома Резерфорда.
- •Спектральные закономерности.
- •Теория Бора. Спектр атома водорода. Недостатки теории Бора. (393)
- •Корпускулярно волновой дуализм микрочастиц. Гипотеза де Бройля.
- •Соотношение неопределённостей.
- •Волновая функция. Уравнение Шредингера.
- •Частица в одномерной потенциальной яме.(410)
- •Решение уравнения Шредингера для атома водорода.
- •Последовательность заполнения электронных оболочек. Периодическая система.
- •Рентгеновские спектры.(429)
- •Термодинамические параметры.(82)
- •Уравнение состояния идеального газа. Законы идеального газа.(84-85)
- •Распределение молекул газа по скоростям и энергиям теплового движения.(88)
- •Распределение Больцмана.(90)
- •Распределение Максвелла-Больцмана.
- •Основное уравнение молекулярно-кинетической теории газов. (86)
- •Внутренняя энергия системы.(100)
- •Работа и теплота.(102)
- •Первое начало термодинамики.(101)
- •Теплоёмкость. Уравнение Майера.(103)
- •Круговой процесс. Цикл Карно. (115)
- •Обратимые и необратимые процессы. Второе начало термодинамики.(108,111)
- •Энтропия.
- •Третье начало термодинамики.
- •Термодинамические функции состояния.
- •Силы и потенциальная энергия межмолекулярного взаимодействия.
- •Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.(119)
- •Внутренняя энергия реального газа.(122)
- •Фазовые равновесия и фазовые превращения.
- •Фазовые переходы 1 и 2 рода.(141)
- •Диаграмма состояния. Тройная точка.(142)
- •Конденсированное состояние.(144)
- •Теплопроводность.(94)
- •Диффузия.(94)
- •Диффузия в газах, жидкостях и твёрдых телах.
- •Вязкость. Средняя длина свободного пробега(91, 95).
Частица в одномерной потенциальной яме.(410)
Решение уравнения Шредингера для атома водорода.
Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид
(217.1)
где ℏ=h/(2), т - масса частицы, - оператор Лапласа
i - мнимая единица, U (х, у, z, f) - потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z, t) - искомая волновая функция частицы.
Уравнение
(217.1) справедливо для любой частицы (со
спином, равным 0; см. § 225), движущейся с
малой (по сравнению со скоростью света)
скоростью, т. е. со скоростью v<<c. Оно
дополняется условиями, накладываемыми
на волновую функцию: 1) волновая функция
должна быть конечной, однозначной и
непрерывной (см. § 216); 2) производные
должны
быть непрерывны; 3) функция ||
должна быть интегрируема; это условие
в простейших случаях сводится к условию
нормировки вероятностей
Уравнение
называется
уравнением Шредингера для стационарных
состояний.
Последовательность заполнения электронных оболочек. Периодическая система.
В основе построения периодической системы лежат 2 принципа: 1) В атоме может быть 1 элемент с данным набором квантовых чисел. При определённом числе электронов в атоме осуществляется состояние с min энергией. При переходе к следующей орбите энергия связи уменьшается. n(главное(1, 2, 3…), l(орбитальное(0, 1, 2.., n-1)), ml(магнитное(-l..0..+l), ms(магнитно-спиновое(0.5,-0.5)). Д.И.Менделеев ввел понятие порядкового номера Z химического элемента, равного числу протонов в ядре и соответственно равного общему числу электронов в электронной оболочке атома. Расположив химические элементы по мере возрастания порядковых номеров, он получил периодичность в изменении химических свойств элементов. Однако для известных в то время 64 химических элементов некоторые клетки таблицы оказались незаполненными, так как соответствующие им элементы (например, Ga, Se, Ge) тогда еще не были известны. Д. И. Менделеев, таким образом, не только правильно расположил известные элементы, но и предсказал существование новых, еще не открытых элементов и их основные свойства. Кроме того, ему удалось уточнить атомные веса некоторых элементов. Например, атомные веса Be и U, вычисленные на основе таблицы Менделеева, оказались правильными, а полученные ранее экспериментально — ошибочными.
Рентгеновские спектры.(429)
Длина волны рентгеновского излучения находится от 10^-3 до 10^-9 (100 эВ до 10^6 эВ). Типы: сплошные (возникают торможении быстрых электронов в веществе катода), линейчатый (зависит от материала антикатода)
Термодинамические параметры.(82)
Состояние системы задается термодинамическими параметрами (параметрами состояния) — совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и удельный объем.
Температура — одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура — физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы — термодинамическую и Международную практическую, градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С). В Международной практической шкале температура замерзания и кипения воды при давлении 1,013×105 Па соответственно 0 и 100°С (реперные точки).
Термодинамическая температурная шкала определяется по одной реперной точке, в качестве которой взята тройная точка воды (температура, при которой лед, вода и насыщенный пар при давления 609 Па находятся в термодинамическом равновесии). Температура этой точки по термодинамической шкале равна 273,16 К (точно). Градус Цельсия равен кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Международной практической шкале связаны соотношением
Т = 273,15 + t.
Температура T = 0 К называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.
Удельный объем v — это объем единицы массы. Когда тело однородно, т. е. его плотность r = const, то v=V/m=1/p. Так как при постоянной массе удельный объем пропорционален общему объему, то макроскопические свойства однородного тела можно характеризовать объемом тела.
Параметры состояния системы могут изменяться. Любое изменение в термодинамической системе, связанное с изменением хотя бы одного из ее термодинамических параметров, называется термодинамическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой системы при этом не изменяются).