Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по Физика.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
736.77 Кб
Скачать
  1. Спектральные закономерности.

Линейчатый спектр атома представляет собой совокупность большого числа линий, разбросанных по всему спектру без всякого видимого порядка. Однако внимательное изучение спектров показало, что расположение линий следует определенным закономерностям.   Яснее всего, конечно, Рис. 326. Линейчатый спектр водорода (серия Бальмера, длины волн в нанометрах). Ha, Нb, Нg и Hd — обозначения первых четырех линий серии, лежащих в видимой области спектра эти закономерности выступают на сравнительно простых спектрах, характерных для простых атомов. Впервые такая закономерность была установлена для спектра водорода, изображенного на рис. 326. В 1885 г. швейцарский физик и математик Иоганн Якоб Бальмер (1825—1898) установил, что частоты отдельных линий водорода выражаются простой формулой: где n означает частоту света, т. е. число волн, испускаемых в единицу времени, R — называемая постоянной Ридберга величина, равная 3,28984•1015 с-1, и m — целое число. Если задавать для т значения 3, 4, 5 и т. д., то получаются значения, очень хорошо совпадающие с частотами последовательных линий спектра водорода. Совокупность этих линий составляет серию Бальмера. В дальнейшем было обнаружено, что в спектре водорода еще имеются многочисленные спектральные линии, которые также составляют серии, подобные серии Бальмера.  Частоты этих линий могут быть представлены формулами (серия Лаймана),  (серия Пашена), причем R имеет то же самое числовое значение, что и в формуле Бальмера. Таким образом, все водородные серии можно объединить одной формулой: где n и m — целые числа, причем m³n+1. Спектры других атомов значительно сложнее, и распределение их линий в серии не так просто. Оказалось, однако, что спектральные линии всех атомов могут быть распределены в серии. Крайне важно, что сериальные закономерности для всех атомов могут быть представлены в форме, подобной формуле Бальмера, причем постоянная R имеет почти одно и то же значение для всех атомов. Существование спектральных закономерностей, общих для всех атомов, указывало несомненно на глубокую связь этих закономерностей с основными чертами атомной структуры. Действительно, датский физик, создатель квантовой теории атома Нильс Бор (1885—1962) в 1913 г. нашел ключ к пониманию этих закономерностей, установив в то же время основы современной теории атома (см. гл. XXII).

  1. Теория Бора. Спектр атома водорода. Недостатки теории Бора. (393)

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка

Недостатки теории Бора. Не смогла объяснить интенсивность спектральных линий.

Справедлива только для водородоподобных атомов и не работает для атомов, следующих за ним в таблице Менделеева.

Теория Бора логически противоречива: не является ни классической, ни квантовой. В системе двух уравнений, лежащих в её основе, одно — уравнение движения электрона — классическое, другое — уравнение квантования орбит — квантовое.

Теория Бора являлась недостаточно последовательной и общей. Поэтому она в дальнейшем была заменена современной квантовой механикой, основанной на более общих и непротиворечивых исходных положениях. Сейчас известно, что постулаты Бора являются следствиями более общих квантовых законов. Но правила квантования типа широко используются и в наши дни как приближенные соотношения: их точность часто бывает очень высокой.