Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
метаболизм углеводов и липидов.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
903.17 Кб
Скачать

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ЧИТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

БИОХИМИЯ

Метаболизм углеводов и липидов

учебное пособие

Чита, 2013

УДК 612.015.3:577. 125 (075.8)

ББК 28.072я73

Никитина Л.П., Гомбоева А.Ц.

Биохимия: Метаболизм углеводов и липидов: Учебное пособие. – Чита : ИЦЦ ЧГМА, 2013. – 92 с.

В пособии приведены сведения о структуре и свойствах углеводов и липидов, изложены их метаболизм. Приведены примеры некоторых заболеваний, в генезе которых лежат нарушения углеводного и липидного обменов. Включены тестовые задания для оценки уровня усвоения изученного материала.

Данное пособие предназначено для самостоятельной работы студентов лечебного и педиатрического факультетов как в аудиторное, так и внеаудиторное время и направлено на изучение современного материала по темам «Обмен углеводов» и «Обмен липидов» в соответствии с программой утвержденной для медицинских вузов.

Рецензенты:

Доцент кафедры биологии Читинской государственной медицинской академии к.б.н. Ларина Н.П.

Старший научный сотрудник лаборатории экспериментальной и клинической биохимии т иммунологии НИИ медэкологии при ГБОУ ВПО ЧГМА, к.б.н. Максименя М.В.

Содержание

Стр.

Список сокращений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

Глава 1.

Углеводный обмен. А.Ц. Гомбоева, ЛП.Никитина

1.1.

Виды углеводов и их функции. . . . . . . . . . . . . . . . . . . . . . . . . .

5

1.2.

Переваривание сложных глицидов. . . . . . . . . . . . . . . . . . . . . .

8

1.3.

Судьба глюкозы в клетке . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

1.4.

Гликогенолиз и гликогеногенез . . . . . . . . . . . . . . . . . . . . . . . .

18

1.5.

Колебания величин глюкозы в крови, методы их изучения . .

21

1.6.

Метаболизм гетерополисахаридов . . . . . . . . . . . . . . . . . . . . . .

23

1.7.

Регуляция и патология углеводного обмена . . . . . . . . . . . . . .

24

Тесты к главе «Углеводный обмен». . . . . . . . . . . . . . . . . . . . . . . . . . .

27

Глава 2. Метаболизм липидов ЛП .Никитина, А.Ц. Гомбоева

2.1.

Строение и функции липидов. . . . . . . . . . . . . . . . . . . . . . . . . . .

36

2.2.

Переваривание липидов пищи . . . . . . . . . . . . . . . . . . . . . . . . . .

37

2.3.

Классификация и роль липопротеинов. . . . . . . . . . . . . . . . . . .

41

2.4.

Катаболизм глицерола и высших жирных кислот

2.4.1. Пути утилизации глицерола . . . . . . . . . . . . . . . . . . . . .

44

2.4.2. Виды окисления высших жирных кислот. .. . . . . . . . . . .

45

2.5.

Анаболическая фаза обмена триацилглицеролов

2.5.1. Синтез высших жирных кислот. . . . . . . . . . . . . . . . . . . .

48

2.5.2. Кетогенез и его использование в клетке. . . . . . . . . . . . .

50

2.5.3. Биосинтез триацилглицеролов . . . . . . . . . . . . . . . . . . . . .

52

2.6.

Судьба фосфолипидов в организме. . . . . . . . . . . . . . . . . . . . . .

53

2.7.

Метаболизм стероидов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

2.8.

Перекисное окисление липидов и антирадикальная защита .

56

2.9.

Регуляция обмена липидов . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

2.10

Патология липидного обмена

2.10.1. Ожирение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

2.10.2. Болезни обмена холестерола . . . . . . . . . . . . . . . . . . . . .

60

Тесты к главе «Метаболизм липидов». . . . . . . . . . . . . . . . . . . . . . . . . . . . .

62

Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

73

Ответы к тестам. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

74

Приложения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75

Список сокращений:

АДФ – аденозиндифосфорная кислота

ц-АМФ – циклическая аденозиндифосфорная кислота

АО – антиоксидант

АПБ – ацил-переносящий белок

АРЗ – антирадикальная защита

АТФ – аденозинтрифосфорная кислота

АФК – активные формы кислорода

АХАТ – ацетил-КоА-холестеролацилтрансфераза

ВЖК – высшая жирная кислота

ГАГ – глюкозоаминогликаны

ГА-3- Ф – глицеральдегид-3-фосфат

ГКС – глюкокортикостероиды

ГМГ – 3-гидрокси -3-метил-глутарат

ц-ГМФ – циклическая гуанозинмонофосфорная кислота

ГНГ – Глюконеогенез

ГФЛ – глицерофосфолипиды

ДАГ – диацилглицерол

ДГАФ –дигидроксиацетонфосфат

ДНК –дезоксирибонуклеиновая кислота

ЖКБ – желчно-каменная болезнь

ЖКТ – желудочно-кишечный тракт

ИА – индекс атерогенности

КА – катехоламины

КоА – кофермент А (кофермент ацилирования)

ЛДГ – лактатдегидрогеназа

ЛПВП – липопротеины высокой плотности

ЛПОНП – липопротеины очень низкой плотности

ЛП – липопротеины

ЛП-липаза – липопротеинлипаза

ЛППП – липопротеины промежуточной плотности

ЛХАТ – лецитинхолестеролацилтрансфераза

МАГ – моноацилглицерол

НАД – никотинамидадениндинуклеотид

НАДФ – никотинамидадениндинуклеотид фосфат

ОА – оксалоацетат

ПВК – пировиноградная кислота

ПНЖК – полиненасыщенные жирные кислоты

ПОЛ – перекисное окисление липидов

ПФП – пентозофосфатный путь окисления глюкозы

СРО – свободнорадикальное окисление

СФЛ – сфингофосфолипиды

ТАГ – триацилглицерол

УДФ – уридиндифосфорная кислота

УДФ-глюкоза – уридиндифосфат-глюкоза

УДФГК – уридиндифосфоглюкуроновая кислота

УТФ – уридинтрифосфорная кислота

ФАД –флавинадениндинуклеотид

ФЛ – фосфолипиды

ФМН – флавинмононуклеотид

ХМ – хиломикроны

ХС – холестерол

ЦДФ – цитидиндифосфорная кислота

ЦДФ-холин – цитидиндифосфат- холин

ЦТФ – цитидинтрифосфорная кислота

ЦТК – цикл трикарбоновых кислот

ЭТЦ – электронотранспортная цепь

ЭХС – эфиры холестерола

Введение

Жизнедеятельность клетки, ткани, органа и организма в целом состоит из бесчисленного множества физических и химических действий. Суть последних химические реакции. Распад органических соединений (углеводов, липидов) часто сопровождается высвобождением энергии, так необходимой для выполнения разнообразных функций.

Но как и все биоструктуры, эти вещества полифункциональны. Глюкоза стоит у истоков синтеза многочисленных биополимеров, служащих рецепторами, компонентами мембран, регуляторами процессов, защитниками от патогенов и т.д. Высшие жирные кислоты включаются в различные липиды, также имеющие огромное физиологическое значение. Поэтому изучение течения углеводного и липидного обменов, тесно сопряженных друг с другом, представляет для студентов особый интерес, поможет им уяснить отдельные звенья патогенеза многих заболеваний. При написании данного учебного пособия использован компетентностный подход: при работе с учебным пособием у студентов должны формироваться способность и готовность анализировать, интерпретировать социально значимые болезни, такие как ожирение, атеросклероз, сахарный диабет (ОК1, ПК1) и знать молекулярные механизмы развития названных заболеваний (ПК2, ПК5, ПК15).

Глава 1. Углеводный обмен л.П. Никитина, а.Ц. Гомбоева

1.1. Виды углеводов и их функции

Первые органические соединения, которые стали называть углеводами, имели строение, где, кроме атомов углерода, содержались атомы водорода и кислорода в такой же пропорции, как и в молекуле воды (2:1), - отсюда их название. Очень редко используют термин – глициды (от слова glycos — сладкий). В настоящее время известны многочисленные вещества подобного рода.

Для удобства их изучения разработана классификация, основанная на особенностях строения (Приложение, рис.1). К простым углеводам (моносахаридам) принадлежат молекулы, неспособные к гидролизу, включающие в свой состав карбонильную (=С=О) и спиртовую ( -СН-ОН) группы. В зависимости от количества содержащихся атомов углерода выделяют ди-, три-, тетр-, пент-, гекс-, гепт- и др. -озы. Окончанием -оза завершается термин, обозначающий несложный углевод (рибоза, рамноза, глюкоза, лактоза и т.д.) (Приложение, рис. 2). Важнейшей из гексоз является глюкоза, основное предназначение которой высвобождение энергии при распаде. Это единственное соединение, способное служить источником энергии в условиях дефицита кислорода, что для клетки имеет жизненно важное значение при постоянной угрозе вероятности гипоксии (например, пережатие сосуда при не совсем удачной позе или длительная ее неизменность и т. д.). Кроме того, глюкоза используется тканями для синтеза самых разных углеводов и их производных (УДФГК, выполняющая обезвреживающую функцию в печени). Другой же сходный по строению с ней моносахарид – галактоза (отличающийся лишь положением гидроксила у одного из атомов углерода) используется организмом совсем для иных целей. Это обязательный компонент гликолипидов и гликопротеинов, что и позволяет обнаруживать её в структуре клеточных и органоидных мембран, участвовать в обеспечении иммунного ответа, быть кирпичиком макромолекул, формирующих хрящевую и другие виды соединительной ткани, отвечать за группоспецифичность крови, помогать в работе рецепторов и т. д.

Среди пентоз особая роль принадлежит рибозе и дезоксирибозе. Из-за них такие важные для существования организма макромолекулы рибо- и дезоксирибонуклеиновые кислоты (ДНК и РНК) получили свое название. От работы последних зависят нормальное выполнение репродуктивной функции и непрекращающееся формирование белковых молекул в клетке. Нуклеиновые кислоты, являясь биополимерами, состоят из мономеров, которые могут также сохраняться в первозданном виде и обеспечивать жизнедеятельность тканей.

Например, АТФ — универсальный макроэрг, поэтому данное соединение и его аналоги (ГТФ, ЦТФ, УТФ) служат источниками энергии для различных процессов (синтеза, транспорта, сокращения, передачи нервных импульсов и т. д.). Циклические мононуклеотиды (ц-АМФ, ц-ГМФ) – вторичные посредники, работающие окончательными передатчиками информации от верхних отделов регуляторных систем к органоидам клетки. Есть еще один мононуклеотид, выполняющий специфическую функцию — кофермент дегидрогеназ (ФМН). Подобную роль играют и более сложные вещества — динуклеотиды (НАД+, НАД+Ф, ФАД и их аналог HSKoA).

Дисахариды регистрируется в продуктах питания (в молоке - лактоза, в свекле, меде — сахароза, грибах — трегалоза); попадая в ЖКТ человека, они гидролизуются до своих монопроизводных, в таком виде всасываются и используются. Лишь лактоза может синтезироваться в молочных железах женщин и быть в составе грудного молока жизненно важным компонентом в питании младенцев.

Олигосахариды, включающие от 2 до 10 мономеров, обычно служат звеньями других сложных веществ неуглеводной природы, входя в состав гликопротеинов или гликолипидов.

Полисахариды в зависимости от включенных субъединиц делятся на гомо- и гетероструктуры. Первые содержат одинаковые звенья: в крахмале и гликогене регистрируют только α-глюкозу, в клетчатке – ее β-аналог. В итоге крахмал легко разрушается в ЖКТ, а клетчатка на это не способна. Гликоген, откладываясь в клетках, при необходимости используется в качестве источника глюкозы, когда содержание последней в плазме крови или миоцитах уменьшается. Особенно много его накапливается в печени (до 6% от ее массы) и, конечно, в мышцах (до 1%).

Громадные мицеллы, формирующиеся из моносахаридов, их производных (амино-, ацетил-, сульфо-) являются гетерополисахаридами. Если их состав включает только вышеперечисленные компоненты, то такие вещества называют гликозамингликанами (ГАГ) (старый термин –мукополисахариды). Основные представители: гиалуроновая кислота, хондроитинсульфат, дерматансульфат, кератансульфат — фундамент различных видов соединительной ткани, а гепарин, чаще синтезируемый тучными клетками печени — естественный антикоагулянт. Первые, имея сетчатую структуру, выполняют функцию молекулярных фильтров, а поскольку включают многочисленные полярные группировки (НО-, Н2N- и т. д.), способные образовывать водородные связи с молекулами воды, могут служить в качестве ее депо и различных катионов. ГАГи формируют также защитную оболочку эпителия многих полых органов, в первую очередь, кишечника, которую называют гликокаликсом. К гетерополисахаридам принадлежат также протеогликаны и липогликаны, которые выполняют чаще пластическую функцию, а первые еще могут быть рецепторами, антителами, регуляторами, ферментами.

Функции углеводов в организме многообразны:

  • Энергетическая – преимущество углеводов состоит в их способности окисляться как в аэробных, так и в анаэробных условиях (глюкоза).

  • Защитно-механическая сложные глициды составляют основное вещество трущихся поверхностей суставов, находятся в сосудах и слизистых оболочках (гиалуроновая кислота и другие гликозаминогликаны).

  • Опорно-структурная – ГАГи включены в состав протеогликанов, например, хондроитинсульфат в соединительной ткани.

  • Гидроосмотическая и ионрегулирующая – гетерополисахариды обладают высокой гидрофильностью, отрицательным зарядом и, таким образом, удерживают Н2О, ионы Са2+, Mg2+, Na+ в межклеточном веществе, обеспечивают тургор кожи, упругость тканей.

  • Кофакторная – гепарин является кофактором липопротеинлипазы плазмы крови и ферментов свертывания крови (инактивирует тромбокиназу).