
- •1 Уровни организации белковых молекул. Аминокислотный составбелков.
- •2 Олигомерные белки. Гемоглобин. Миоглобин.
- •3 Физико-химические св-ва белков.
- •4 Лабильность. Денатурация. Прионы.
- •5 Основные св-ва белковых фракций крови и их классификация.
- •6 Глобулярные и фибрилярные белки
- •7 Хромопротеины
- •8 Нуклеиновые кислоты
- •9 Вторичная структура днк и рнк
- •12 Витамин в1 (тиамин)
- •13 Тиаминпирофосфат
- •14 Витамин в12, представление о его химическом строении. Биологическая роль, основные пищевые источники.
- •18 Пантотеновая кислота (в5)
- •19. Фолиевая кислота и ее коферментная форма. Биологическое значение ее.
- •20 Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов.
- •21 Никотиновая кислота, ее химическое строение и биологическая роль. Основные пищевые источники никотиновой кислоты.
- •21 Витамин в2 (рибофлавин)
- •22 Витамин а, его химическое строение и роль в обмене веществ клеток. Основные пищевые источники витамина а.
- •23 Витамины группы д, их строение и физиологическая роль.
- •24. Аскорбиновая кислота, ее строение и роль в метаболизме.
- •25 Витамин е. Его химическое строение и физиологическое значение.
- •26 Витамин к, его строение и физиологические функции
- •27 История открытия и изучения ферментов Особенности ферментативного катализа. Различия ферментного состава органов и тканей. Органоспецифичные ферменты.
- •29 Специфичность действия ферментов. Зависимость скорости ферментативных реакций от температуры, pH, концентрации фермента и субстрата.
- •30 Классификация ферментов, и ее принципы:
- •31 Зависимость скорости ферментативной реакции от концентрации субстрата. Графики Михаэлиса-Ментен и Лайнуивера-Бэрка. Медико-биологическое значение константы Михаэлиса.
- •34, 37Классификация ферментов, и ее принципы:
- •36 Ингибирование ферментативной активности и его виды. Медико-биологическое значение ингибирования.
- •38 Эндоэнергетические и экзергонические реакции в живой клетке.
- •40 Биологическое значение цтк
- •45 Дыхательная цепь митохондрий, ее локализация в клетке, строение и основные принципы функционирования.
- •48 Токсичность кислорода.
- •50 Иерархия регуляторных систем.
- •51. Механизм действия гормонов.
- •53 Г. Задней доли гипофиза.
- •54. Гомоны надпочечников: Кортикостероиды(корковое вво).
- •55 Эстрогены
- •56 Андрогены
- •57. Прогестерон.
- •59. Гормоны мозгового в-ва надпочечников
- •60. Гормоны щитовидной железы.
- •62,63 Углеводы, в общем. Гликолипиды и гликопротеиды. Гомо- и гетерополисахариды.
- •64 Глюкоза – важнейший метаболит углеводного обмена.
- •65 Наследственные нарушения обмана моносахаридов и дисахаридов.
- •66 Аэробный распад глюкозы. Физиологическое значение аэробного распада глюкозы. Использование глюкозы для синтеза жиров в печени и в жировой ткани.
- •67 Глюкозо-6-фосфат, схема путей его образования и использования в организме
- •68 Синтез гликогена и гликогенолиз. Биологическое значение и регуляция этих процессов и роль печени в их реализации.
- •69Пути синтеза полисахаридов. Роль утф в синтезе полисахаридов. Регуляция синтеза и распада полисахаридов. Гликогенозы и биохимические механизмы их возникновения.
- •71 Гликогенолиз и его биологическое значение.
- •70 Свойства и строение гликогена. Биосинтез гликогена. Мобилизация гликогена и его гормональная регуляция.
- •73 Молочнокислое брожение, последовательность реакций, энергетический выход, биологическое значение.
- •75 Окислительное декарбоксилирование пвк и роль этого процесса в клеточном метаболизме. Пируват как ключевой метаболит в превращениях углеводов, аминокислот и жирных кислот.
- •76 Взаимопревращение углеводов и его роль в клеточном метаболизме.
- •78 Глюкозо-лактатный и глюкозо-аланиновый циклы.
- •80 Челночные механизмы транспорта восстановительных эквивалентов из цитоплазмы в митохондрии. Химизм, медико-биологическое значение.
- •82 Представление о пентозофосфатном пути превращения глюкозы. Его роль в метаболизме клеток. Окислительные реакции (до стадии рибулозо-5-фосфата).
- •83 Пентозофосфатный путь превращения глюкозы в эритроцитах и жировой ткани. Значение этого пути для данного вида тканей. Особенности протекания в пролиферирующих клетках.
- •85 Классификация сфинголипидов, их физико-химическое строение и физиологическая роль. Представление о сфинголипидозах.
- •86 Пищевые жиры и их переваривание. Всасывание продуктов переваривания. Нарушения переваривания и всасывания. Биосинтез триглицеридов, локализация этого процесса в клетке и его значение.
- •87 Ненасыщенные жирные кислоты, их физико-химические свойства и значение для клеток. Незаменимые липидные факторы питания.
- •88 Липидный состав мембран - фосфолипиды, гликолипиды, холестерин. Роль липидов в формировании липидного бислоя. Латеральная диффузия липидов и белков. Участие фосфолипаз в обмене фосфолипидов.
- •89 Распад и синтез триацилглицеринов: химизм, биологическое значение и регуляция.
- •90 Представление о биосинтезе и катаболизме фосфолипидов и гликолипидов. Функции фосфолипидов и гликолипидов. Сфинголипидозы.
- •91 Образование желчных кислот и их роль в переваривании жиров. Конъюгирование желчных кислот, первичные и вторичные желчные кислоты. Связь с обменом холестерина. Строение желчных кислот.
- •93 Химическое строение гликолипидов и их биологическая роль.
- •94 Окисление ненасыщенных жирных кислот, метаболические особенности этого процесса.
- •97 Биосинтез кефалина и лецитина и их биологическая роль. Липотропные факторы.
- •99 Холестерин как предшественник других стероидов. Биохимические основы развития атеросклероза.
- •100 Ресинтез триацилглицеринов в стенке кишечника. Образование хиломикронов и транспорт жиров. Роль аполипопротеинов в составе хиломикронов. JIипопротеинлипаза.
- •101 Краткая характеристика липопротеидов крови. Роль апопротеинов в функционировании липопротеидов. Диагностическое значение определения липопротеинов в клинике.
- •102 Хиломикроны, их физико-химическая характеристика и физиологическое значение.
- •104 Роль печени в липидном обмене.
- •108 Типы дезаминирования аминокислот и их значение в клеточном обмене. Непрямое дезаминирование, химизм процесса, стадии, биологическое значение.
- •109 Цикл мочевины. Связь орнитинового цикла с превращениями фумаровой и аспарагиновой кислот. Нарушения синтеза и выведения мочевины. Гипераммониемии.
- •110 Трансаминирование, химизм процесса, специфичность аминотрансфераз. Диагностическое значение определения аминотрансфераз.
- •111 Пути обезвреживания аммиака в организме. Цикл мочевинообразования. Механизмы обезвреживания аммиака в печени; в нервной и мышечной ткани.
- •112Глицин, его строение и роль в обмене веществ. Основные пути метаболизма глицина. Глицин как важнейший донор углеродных фрагментов для биосинтезов.
- •113 Аспарагиновая и глутаминовая кислоты, строение, роль в метаболизме основные пути метаболизма, биологическое значение глутатиона.
- •114 Строение аргинина и гистидина. Их роль в обмене веществ.
- •116 Роль цистеина и метионина в обмене веществ. Липотропные факторы. S-аденозилметионин, как липотропный фактор.
- •117Роль лизина и аргинина в клеточном метаболизме.
- •118 Роль тирозина в метаболизме человека и животных.
- •120 Строение днк эукариотических клеток и механизмы, лежащие в основе ее пространственной упаковки. Многообразие азотистых оснований. Функции нуклеиновых кислот в живых организмах.
- •121 Генетический код и его характеристика. Молекулярные механизмы возникновения наследственных болезней. Краткое описание процесса трансляции.
- •122 Строение рибосом прокариот и эукариот. Роль рибосом в биосинтезе белка.
- •123 Синтез белка на рибосомах. Условия необходимые для реализации этого процесса.
- •125 Распад пуриновых оснований. Химизм процесса и его медико-биологическое значение. Подагра.
- •126 Представления о распаде и биосинтезе пиримидиновых нуклеотидов.
- •127 Распад гема. Образование и пути выделение билирубина. Желтухи, диагностика. Характеристика распада гемоглобина в неонатальном периоде. Физиологическая желтуха новорожденных.
- •132 Обмен веществ: питание, метаболизм и выделение продуктов метаболизма. Состав пищи человека. Органические и минеральные компоненты. Основные и минорные компоненты.
- •128 Биосинтез гема и его регуляция. Химизм реакций до порфобилиногена, представление о дальнейших путях синтеза гема. Порфирии.
- •129 Взаимосвязь обмена углеводов, липидов и белков.
- •130 Незаменимые факторы питания и их медико-биологическое значение. Необходимость оптимального обеспечения детского организма незаменимыми факторами питания.
- •131 Основные пищевые вещества: углеводы, жиры, белки; суточная потребность, переваривание; частичная взаимозаменяемость при питании.
121 Генетический код и его характеристика. Молекулярные механизмы возникновения наследственных болезней. Краткое описание процесса трансляции.
Триплетность – число кодирующих последовательностей из 4х нуклеотидов по три равно 64. Кодирующие элементы в шифровании аминокислотной последовательности являются тройки нуклеотидов – триплеты, кодоны.
Специфичность – каждому кодону соответствует только одна определенная аминокислота. В этом смысле генетический год однозначен.
Вырожденность – в мРНК и ДНК имеет смысл 61 триплет, каждый из которых кодирует включение в белок одной из 20 аминокислот. В информационных молекулах включение в белок одной и той же аминокислоты определяют несколько кодонов.
Если ген код читается неперекрывающимися триплетами, возможны три способа трансляции нуклеиновой к-ты в б, в завис от стартовой точки, т.е. три рамки считывания. Последовательность нуклеотидов, записанная условно в направлении от 5'-конца к 3'-концу, соответствует аминокислотной последовательности, записанной в направлении от N-конца к C-концу.
Линейность записи информации – в ходе трансляции кодоны мРНК «читаются» с фиксированной стартовой точки последовательно и не перекрываются. Нет сигналов, указывающих на конец одного кодона и начало следующего. Кодон AUG – инициирующий (Met), следующие за ним триплеты читаются последовательно без каких-либо пропусков вплоть до стоп-кодона, на котором синтез полипептидной цепи завершается.
Универсальность – смысл кодовых слов одинаков для всех изученных организмов: вирусов, бактерий, растений, земноводных, млекопитающих, включая человека. Позднее стало известн.одно исключение – мРНК митохондрий содержит 4 триплета имеющих другое значение, чем в мРНК ядерного происхождения. В мРНК митохондрий триплет UGA кодирует Три, AUA –Мет, AGA и AGG – доп.стоп кодоны.
Колинеарность гена и продукта – линейное соответствие последовательности кодонов гена и последовательности аминокислот в белковом продукте.Последовательности оснований в гене, коллинеарные аминокисл.последовательности в белке прерыв.интронами. Аминокисл.послед.белка колинеарна послед.экзонов в гене или зрелой мРНК после посттранскрипционного удаления интронов.
Трансляция – 1).инициация, 2)Элонгация 3)Терминация
122 Строение рибосом прокариот и эукариот. Роль рибосом в биосинтезе белка.
Рибосомы эукариот представляют собой субклеточные частицы, сост из двух субъединиц: большой и малой (60S и 40S), прокариотов - 30S и 50S.
Каждая из субъединиц содержит РНК и белки. Субъединицы распадаются на составные части в растворах с низким значением рН и в присутствии детергентов.
Нуклеиновые к-ты субъединиц выполняют, в частности, роль каркаса для объединения б в определенном порядке. Рибосома в целом функционирует как устройство для синтеза б.
Строение рибосом.
Химически рибосомы представляют собой нуклеопротеины, состоящие из РНК и белков, причем 80S рибосомы эукариот содержат примерно равное их количество, а у 70S рибосом прокариот соотношение РНК и белка составляет 65% и 35% соответственно. РНК рибосом принято называть рибосомными и обозначать рРНК. Как 80S, так и 70S рибосомы состоят из двух субчастиц. Одна из субчастиц по размерам в 2 раза превышает вторую. Представляют собой сложную молекулярную «машину» («фабрику») синтеза белка.