Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
готовые шпоры.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
221.46 Кб
Скачать

118 Роль тирозина в метаболизме человека и животных.

Роль тирозина в метаболизме.

Фенилаланин - незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин - условно заменимая аминокислота, поскольку образуется из фенилаланина. Содержание этих аминокислот в пищевых белках (в том числе и растительных) достаточно велико. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и ка-таболизируется до СО2 и Н2О. В пигментных клетках (меланоцитах) тирозин выступает предшественником тёмных пигментов - меланинов. Среди них преобладают 2 типа: эумеланины и феомеланины. Эумеланины (чёрного и коричневого цвета) - нерастворимые высокомолекулярные гетерополимеры 5,6-дигидроксииндола и некоторых его предшественников. Феомеланины - жёлтые или красновато-коричневые полимеры, растворимые в разбавленных щелочах. Находятся они, в основном, в составе волос. Меланины присутствуют в сетчатке глаз. В щитовидной железе синтезируются и выделяются гормоны йодтиронины: тироксин (тет-райодтиронин) и трийодтиронин. Эти гормоны представляют собой йодированные остатки тирозина, которые попадают в клетки щитовидной железы через базальную мембрану.В мозговом веществе надпочечников и нервной ткани тирозин является предшественником катехоламинов (дофамина, норадреналина и адреналина). При образовании катехоламинов, которое происходит в нервной ткани и надпочечниках, и меланина в меланоцитах промежуточным продуктом служит диоксифенилаланин (ДОФА) .

119 Химическое строение триптофана и пути его метаболизма. Химическое строение триптофана и пути его метаболизма.

Триптофан - незам. АК, явл. предш. важных биологически актт. в-в, в т.ч. серотонина и рибонуклеотида никотиновой к-ты. Один из его метаболитов - индолуксусная к-та - ростстимулирующий фактор растений. Триптофан окисляется по кинурениновому пути или по серотониновому пути. Кинурен. путь приводит к синтезу НАД . Триптофан под дейст. триптофан2,3диоксигеназы превращ. в формилкинуренин, который под действием формамидазы распадается на муравьиную к-ту и кинуренин, к-й ок-ся в 3-оксикинуренин. 3-оксикинуренин превращ в хинолиновую к-ту - предш. рибонуклеотида никотиновой к-ты.

120 Строение днк эукариотических клеток и механизмы, лежащие в основе ее пространственной упаковки. Многообразие азотистых оснований. Функции нуклеиновых кислот в живых организмах.

Строение ДНК эукориотических клеток и механизмы лежащие в основе ее пространственной упаковки.

Структурными единицами нукл кислот явл нуклеотиды,сост из азотист основания,углевода(заним центр место) и фосфорной к-ты. Нуклеозиды- соединения, сост из остатка азотистого основания и углевода — рибозы (рибонуклеозиды) или дезоксирибозы (дезоксирибонуклеозиды):

ДНК — Дезоксирибонуклеиновая к-та. Сахар — дезоксирибоза, азотистые основания: пуриновые — гуанин (G), аденин (A), пиримидиновые — тимин (T) и цитозин (C).

ДНК часто состоит из двух полинуклеотидных цепей, направленных антипараллельно

Нуклеотиды. –сложн ысокомолекулярн соедин,обеспеч хранение,передачу наследств инфы и реализацию этой инфы.Их структурные компоненты выполн фу-ию кофакторов,аллостерич эффекторов,вход в состав коферментов, приним участие в обмене ве-в и Э.

β-рибоза                 β-дезоксирибоза (C5H10O5)                    (C5H10O4)

Азотистые основания : пиримидиновые (цитозин,урацил,тимин) и пуриновые (аденин, гуанин)

Структурными единицами нукл кислот явл нуклеотиды,сост из азотист основания,углевода(заним центр место) и фосфорной к-ты. Нуклеозиды- соединения, сост из остатка азотистого основания и углевода — рибозы (рибонуклеозиды) или дезоксирибозы (дезоксирибонуклеозиды):

Каждый нуклеотид содержит 3 химически различных компонента: гетероциклическое азотистое основание, моносахарид (пентозу) и остаток фосфорной к-ты. В состав нуклеиновых к-т входят азотистые основания двух типов: пуриновые - аденин (А), гуанин (G) и пиримидиновые - цитозин (С), тимин (Т) и урацил (U). Пентоза представлена дезоксирибозой. Пентозу соединяет с основанием N-гликозидная связь, образованная С1-атомом пентозы и N1 -атомом пиримидина или N9-aтомом пурина. Нуклеиновые кислоты, в мономеры которых входит дезоксирибоза, называют дезоксири-бонуклеиновыми кислотами, или ДНК. В молек. ДНК - аденин (А), тимин (Т), гуанин (G) и цитозин (С). Каждая молекула ДНК упакована в отдельную хромосому. Компактизация и суперспирализация ДНК осуществляются с помощью разнообразных белков, взаимодействующих с определёнными последовательностями в структуре ДНК. Все связывающиеся с ДНК эукариотов белки можно разделить на 2 группы: гисгоновые и негистоновые белки. Комплекс белков с ядерной ДНК клеток называют хроматином. Гистоны - белки с молекулярной массой 11-21 кД, содержащие много остатков аргинина и лизина. Благодаря положительному заряду гистоны образуют ионные связи с отрицательно заряженными фосфатными группами, расположенными на внешней стороне двойной спирали ДНК. Существует 5 типов гистонов. Четыре гистона Н2А, Н2В, НЗ и Н4 образуют октамерный белковый комплекс (Н2А, Н2В, НЗ, Н4)2, который называют "нуклеосомный кор". Молекула ДНК "накручивается" на поверхность гистонового октамера, совершая 1,75 оборота. Такой комплекс гистоновых белков с ДНК служит основной структурной единицей хроматина, её называют "нуклеосома". ДНК-связ. негист. белки. К этой группе относят семейство сайт-специфических белков типа "цинковые пальцы", гомодимеры, белки высокой подвижности, ферменты репликации, транскрипции и репарации.