
- •1 Уровни организации белковых молекул. Аминокислотный составбелков.
- •2 Олигомерные белки. Гемоглобин. Миоглобин.
- •3 Физико-химические св-ва белков.
- •4 Лабильность. Денатурация. Прионы.
- •5 Основные св-ва белковых фракций крови и их классификация.
- •6 Глобулярные и фибрилярные белки
- •7 Хромопротеины
- •8 Нуклеиновые кислоты
- •9 Вторичная структура днк и рнк
- •12 Витамин в1 (тиамин)
- •13 Тиаминпирофосфат
- •14 Витамин в12, представление о его химическом строении. Биологическая роль, основные пищевые источники.
- •18 Пантотеновая кислота (в5)
- •19. Фолиевая кислота и ее коферментная форма. Биологическое значение ее.
- •20 Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов.
- •21 Никотиновая кислота, ее химическое строение и биологическая роль. Основные пищевые источники никотиновой кислоты.
- •21 Витамин в2 (рибофлавин)
- •22 Витамин а, его химическое строение и роль в обмене веществ клеток. Основные пищевые источники витамина а.
- •23 Витамины группы д, их строение и физиологическая роль.
- •24. Аскорбиновая кислота, ее строение и роль в метаболизме.
- •25 Витамин е. Его химическое строение и физиологическое значение.
- •26 Витамин к, его строение и физиологические функции
- •27 История открытия и изучения ферментов Особенности ферментативного катализа. Различия ферментного состава органов и тканей. Органоспецифичные ферменты.
- •29 Специфичность действия ферментов. Зависимость скорости ферментативных реакций от температуры, pH, концентрации фермента и субстрата.
- •30 Классификация ферментов, и ее принципы:
- •31 Зависимость скорости ферментативной реакции от концентрации субстрата. Графики Михаэлиса-Ментен и Лайнуивера-Бэрка. Медико-биологическое значение константы Михаэлиса.
- •34, 37Классификация ферментов, и ее принципы:
- •36 Ингибирование ферментативной активности и его виды. Медико-биологическое значение ингибирования.
- •38 Эндоэнергетические и экзергонические реакции в живой клетке.
- •40 Биологическое значение цтк
- •45 Дыхательная цепь митохондрий, ее локализация в клетке, строение и основные принципы функционирования.
- •48 Токсичность кислорода.
- •50 Иерархия регуляторных систем.
- •51. Механизм действия гормонов.
- •53 Г. Задней доли гипофиза.
- •54. Гомоны надпочечников: Кортикостероиды(корковое вво).
- •55 Эстрогены
- •56 Андрогены
- •57. Прогестерон.
- •59. Гормоны мозгового в-ва надпочечников
- •60. Гормоны щитовидной железы.
- •62,63 Углеводы, в общем. Гликолипиды и гликопротеиды. Гомо- и гетерополисахариды.
- •64 Глюкоза – важнейший метаболит углеводного обмена.
- •65 Наследственные нарушения обмана моносахаридов и дисахаридов.
- •66 Аэробный распад глюкозы. Физиологическое значение аэробного распада глюкозы. Использование глюкозы для синтеза жиров в печени и в жировой ткани.
- •67 Глюкозо-6-фосфат, схема путей его образования и использования в организме
- •68 Синтез гликогена и гликогенолиз. Биологическое значение и регуляция этих процессов и роль печени в их реализации.
- •69Пути синтеза полисахаридов. Роль утф в синтезе полисахаридов. Регуляция синтеза и распада полисахаридов. Гликогенозы и биохимические механизмы их возникновения.
- •71 Гликогенолиз и его биологическое значение.
- •70 Свойства и строение гликогена. Биосинтез гликогена. Мобилизация гликогена и его гормональная регуляция.
- •73 Молочнокислое брожение, последовательность реакций, энергетический выход, биологическое значение.
- •75 Окислительное декарбоксилирование пвк и роль этого процесса в клеточном метаболизме. Пируват как ключевой метаболит в превращениях углеводов, аминокислот и жирных кислот.
- •76 Взаимопревращение углеводов и его роль в клеточном метаболизме.
- •78 Глюкозо-лактатный и глюкозо-аланиновый циклы.
- •80 Челночные механизмы транспорта восстановительных эквивалентов из цитоплазмы в митохондрии. Химизм, медико-биологическое значение.
- •82 Представление о пентозофосфатном пути превращения глюкозы. Его роль в метаболизме клеток. Окислительные реакции (до стадии рибулозо-5-фосфата).
- •83 Пентозофосфатный путь превращения глюкозы в эритроцитах и жировой ткани. Значение этого пути для данного вида тканей. Особенности протекания в пролиферирующих клетках.
- •85 Классификация сфинголипидов, их физико-химическое строение и физиологическая роль. Представление о сфинголипидозах.
- •86 Пищевые жиры и их переваривание. Всасывание продуктов переваривания. Нарушения переваривания и всасывания. Биосинтез триглицеридов, локализация этого процесса в клетке и его значение.
- •87 Ненасыщенные жирные кислоты, их физико-химические свойства и значение для клеток. Незаменимые липидные факторы питания.
- •88 Липидный состав мембран - фосфолипиды, гликолипиды, холестерин. Роль липидов в формировании липидного бислоя. Латеральная диффузия липидов и белков. Участие фосфолипаз в обмене фосфолипидов.
- •89 Распад и синтез триацилглицеринов: химизм, биологическое значение и регуляция.
- •90 Представление о биосинтезе и катаболизме фосфолипидов и гликолипидов. Функции фосфолипидов и гликолипидов. Сфинголипидозы.
- •91 Образование желчных кислот и их роль в переваривании жиров. Конъюгирование желчных кислот, первичные и вторичные желчные кислоты. Связь с обменом холестерина. Строение желчных кислот.
- •93 Химическое строение гликолипидов и их биологическая роль.
- •94 Окисление ненасыщенных жирных кислот, метаболические особенности этого процесса.
- •97 Биосинтез кефалина и лецитина и их биологическая роль. Липотропные факторы.
- •99 Холестерин как предшественник других стероидов. Биохимические основы развития атеросклероза.
- •100 Ресинтез триацилглицеринов в стенке кишечника. Образование хиломикронов и транспорт жиров. Роль аполипопротеинов в составе хиломикронов. JIипопротеинлипаза.
- •101 Краткая характеристика липопротеидов крови. Роль апопротеинов в функционировании липопротеидов. Диагностическое значение определения липопротеинов в клинике.
- •102 Хиломикроны, их физико-химическая характеристика и физиологическое значение.
- •104 Роль печени в липидном обмене.
- •108 Типы дезаминирования аминокислот и их значение в клеточном обмене. Непрямое дезаминирование, химизм процесса, стадии, биологическое значение.
- •109 Цикл мочевины. Связь орнитинового цикла с превращениями фумаровой и аспарагиновой кислот. Нарушения синтеза и выведения мочевины. Гипераммониемии.
- •110 Трансаминирование, химизм процесса, специфичность аминотрансфераз. Диагностическое значение определения аминотрансфераз.
- •111 Пути обезвреживания аммиака в организме. Цикл мочевинообразования. Механизмы обезвреживания аммиака в печени; в нервной и мышечной ткани.
- •112Глицин, его строение и роль в обмене веществ. Основные пути метаболизма глицина. Глицин как важнейший донор углеродных фрагментов для биосинтезов.
- •113 Аспарагиновая и глутаминовая кислоты, строение, роль в метаболизме основные пути метаболизма, биологическое значение глутатиона.
- •114 Строение аргинина и гистидина. Их роль в обмене веществ.
- •116 Роль цистеина и метионина в обмене веществ. Липотропные факторы. S-аденозилметионин, как липотропный фактор.
- •117Роль лизина и аргинина в клеточном метаболизме.
- •118 Роль тирозина в метаболизме человека и животных.
- •120 Строение днк эукариотических клеток и механизмы, лежащие в основе ее пространственной упаковки. Многообразие азотистых оснований. Функции нуклеиновых кислот в живых организмах.
- •121 Генетический код и его характеристика. Молекулярные механизмы возникновения наследственных болезней. Краткое описание процесса трансляции.
- •122 Строение рибосом прокариот и эукариот. Роль рибосом в биосинтезе белка.
- •123 Синтез белка на рибосомах. Условия необходимые для реализации этого процесса.
- •125 Распад пуриновых оснований. Химизм процесса и его медико-биологическое значение. Подагра.
- •126 Представления о распаде и биосинтезе пиримидиновых нуклеотидов.
- •127 Распад гема. Образование и пути выделение билирубина. Желтухи, диагностика. Характеристика распада гемоглобина в неонатальном периоде. Физиологическая желтуха новорожденных.
- •132 Обмен веществ: питание, метаболизм и выделение продуктов метаболизма. Состав пищи человека. Органические и минеральные компоненты. Основные и минорные компоненты.
- •128 Биосинтез гема и его регуляция. Химизм реакций до порфобилиногена, представление о дальнейших путях синтеза гема. Порфирии.
- •129 Взаимосвязь обмена углеводов, липидов и белков.
- •130 Незаменимые факторы питания и их медико-биологическое значение. Необходимость оптимального обеспечения детского организма незаменимыми факторами питания.
- •131 Основные пищевые вещества: углеводы, жиры, белки; суточная потребность, переваривание; частичная взаимозаменяемость при питании.
62,63 Углеводы, в общем. Гликолипиды и гликопротеиды. Гомо- и гетерополисахариды.
Углеводы. Их строение, классификация. Биологическая роль углеводов (сахара) - обширная гр полигидроксикарбонильных соед., вход в состав всех живых организмов;
Классификация - принято делить на моносахариды (углеводы, представл собой полигидроксиальдегиды (альдозы) и полигидроксикетоны (ке-тозы) общей ф-лы СnН2nОn (п = 3-9), в к-рых кажд атом С (кроме карбонильного) связан с группой ОН, и производные этих соед., содержащие разл. др. функц. группы, а также атом Н вместо одного или неск. гидроксилов.), олигосахариды(углеводы, мол кот построены из неск. моносахаридных остатков (от 2 до 10-20), соедин гликозидными связями (экзоциклич. связь ано-мерного атома,С моносахарида ( атомом О соседнего моносахаридного остатка). В соответствии со степенью полимеризации различают дисахариды (биозы), трисахари-ды (триозы), тетрасахариды (тетраозы)) и полисахариды((гликаны), полимерные углеводы, мол кот построены из моносахаридных остатков, соединенных гликозидными связями.).
У члка и животных углеводы выполн важн ф-и: энергетич (главн вид клеточного топлива), структурную (обязат компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).
Гетерополисахариды - полисахариды, в струк. к-ых характерно наличие 2 или более типов мономерных звеньев. Важн. предст. гетерополисахаридов в органах и тк. – гликозаминогликаны (мукополисахариды). Они состоят из цепей сложных углеводов, содержащих аминосахара и уроновые кислоты. Гиалуроновая к-та свзя. воду и скрепляет кл. между собой, входит в состав синовиальной жид-ти, стекловидного тела глаза. Хондроэтинсульфат А явл. главной составляющей хрящевой тк., спос. накапливать Са. Гепарин сульфат обнаружен в печени, м-цах, тимусе, селезенке. легких, сердце,ю кров. русле. накапл. в туч. кл. тормозит свертывание крови. Гликозаминогликаны значит. различ. по размерам, их молеку. массы в пределах от 104 Да для гепарина до 107 Да для гиалуроновой к-ты. Если цепи гликозаминогликана присоед. к белковой молек., соответствующее соединение называют протеогликаном. Протеогл. на 90-95% сост. из углеводов, по своей струк нап еж. свернуты в беспорядочный клубок, обр. домены, которые проник. др. в др., переплетаются и возн. единая струк., формирующая тканевой каркас. запасается большое кол-во воды, поддерж тургор тк.. связ Са, препят. проник. патогенной микрофлоры.
Гомополисахариды - моносахариды, связанные между собой гликозидной связью, обр. цепи. струк. и резервные. Крахмал предст. собой смесь линейного гомополисах - амилозы и разветвленного - амилопектина. Постр. из ост. D-глюкозы, соед.
а 1-> 4 связями, а в точках ветвления 1->6 связями.
Явл. важным пищевым углеводом.
Гликоген - главный резервный полисахарид высш. жив. и чел. Постр. из ост. D-глюкозы. Постр. из ветвящ. полиглюкозидных цепей, а 1->4 связи, в точках ветвления 1-->6 связи.
Хитин - струк. полисах. беспозв. жив.
Целлюлоза - полисах. растений. Спсо. формир. кала.
Синтез гетерополисахаридов происходит при участии гликозилтрансфераз. Углеводная часть гликолипидов и гликопротеинов может быть предст. моносах., а также полисах. Чаще всего в углеводной части встреч. галактоза, манноза, глюкоза, фукоза, N-ацетилгалактозамин, N-аце-тилглюкозамин, сиаловая кислота. Наиболее распространенные гликолипиды — это гликоцерамиды (гликосфин-голипиды), представляющие собой производные церамида. В частности, антигены А и В мембран эритроцитов являются гликоцерамидами.
В гликопротеинах углеводная часть может быть связана с белком за счет гидроксильных групп серина или треонина (О-гликозидная связь) или за счет амидной группы аспарагина (N-гликозидная связь). С одной белковой молекулой может быть связано разное число углеводных цепей — от одной до нескольких десятков, и цепи могут иметь разное строение. Гликопротеиды встречаются в клеточ. оболочках, белковых фракциях крови, ферментах. внут. факторе Касла.
Углеводная часть гликолипидов и гликопротеинов плазматической мембраны всегда нах. на наруж. пов-ти мембраны, контактируя с межклет. в-вом. Углеводы плазматической мембраны вып. роль специфич. лигандов для белков. Они обр. участки узнавания, к к-м присоед. опр. белки; присоедин-ся белок может изм. функц. сост. кл.
Полисахариды клеточной мембраны наряду с белками выполняют роль антигенов при развитии клеточного иммунитета.