Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОСЫ от Мининой.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
101.93 Кб
Скачать

62. Транспортная задача. Граф перевозок. Признак оптимальности. Метод потенциалов.

математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение.[1][2] Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки. Транспортная задача является по теории сложности вычислений NP-сложной и входит в класс сложности NP. Когда суммарный объём предложений (грузов, имеющихся в пунктах отправления) не равен общему объёму спроса на товары (грузы), запрашиваемые пунктами потребления, транспортная задача называется несбалансированной (открытой

Граф перевозок!(ничего не нашла,но можно по логике ответить,это те графики,которые мы составляли по таблицам…минимизация затрат времени.я так думаю)

Признак оптимальности

Необходимые и достаточные признаки оптимальности играют важную роль в решении задачи (1)-(3). Необходимые признаки всегда "сопровождают" оптимальное решение, поэтому с их помощью можно вычислить точки, подозрительные на экстремум. Выполнение достаточных признаков для какой-либо допустимой точки xX гарантирует оптимальность этой точки. Поэтому достаточные признаки можно использовать для нахождения оптимального решения из совокупности допустимых точек, удовлетворяющих необходимым признакам.

Приведем определения, играющие важную роль при установлении признаков оптимальности: дифференцируемых, выпуклых, квазивыпуклых и псевдовыпуклых функций.

Метод потенциалов

Метод позволяет находить оптимальный план перевозок транспортной таблицы. В основе лежит следующая теорема.

Метод потенциалов является модификацией симплекс-метода решения задачи линейного программирования применительно к транспортной задаче. Он позволяет, отправляясь от некоторого допустимого решения, получить оптимальное решение за конечное число итераций.

Формулировка транспортной задачи

Пусть — пункты производства/потребления, — дуги перевозок, — цены провоза по дугам , — набор базисных столбцов.

Задача формулируется как найти

при условиях

где — стоимости провоза по дугам, — производсво (+) / потребление (-)

— решение

Матрица ограничений транспортной задачи состоит из столбцов , содержащих всего два ненулевых элемента — +1 для производителя и −1 для потребителя.

Алгоритм

Метод потенциалов является модификацией симплекс-метода, в котором базисная матрица представлена в виде дерева.

Двойственные переменные симплекс-метода для транспортной задачи называются потенциалами.

Потенциалы вычисляются по формуле , что эквивалентно

Для дуги потенциалы дуг связаны формулой .

Таким образом, потенциал потребителя равна потенциалу производителя + стоимость перевозки. С экономической точки зрения это можно трактовать как стоимость продукта в точке потребления.

Проверка оптимальности плана легко трактуется с экономической точки зрения — если стоимость продукта в точке потребления больше стоимости в точке производства + цена перевоза, по этой дуге следует везти. Величина называется невязкой дуги.

Метод потенциалов-Этот первый точный метод решения транспортной задачи предложен в 1949 году Кантаровичем А. В. И Гавуриным М. К. по существу он является детализацией метода последовательного улучшения плана применительно к транспортной задаче. Однако в начале он был изложен вне связи с общими методами линейного программирования. Несколько позднее аналогичный алгоритм был разработан Данциом, который исходил из общей идеи линейного программирования. В американской литературе принято называть модифицированным распределительным методом. Метод потенциалов позволяет определить отправляясь от некоторого опорного плана перевозок построить решение транспортной задачи за конечное число шагов (итераций).

Общий принцип определения оптимального пла­на транспортной задачи этим методом аналогичен принципу решения задачи линейного программирования симплексным методом, а именно: сначала на­ходят опорный план транспортной задачи, а затем его последовательно улучшают до получения оптимального плана.

Добавление дуги приводит к возникновению цикла в дереве. Увеличение провоза по вводимой дуге приводит к пересчету потоков в цикле, провоз по одной из дуг при этом уменьшится до нуля. Дугу с нулевым потоком удаляем из базиса, при этом базисный граф остается деревом (цикл разрывается).

Остается только пересчитать потенциалы — добавить (или вычесть — зависит от направления дуги) ко всем вершинам «повисшей ветки» величину невязки

Процесс завершается, когда условие оптимальности выполняется для всех дуг.