
- •49. Щелочная и кислая фосфатаза в минеральном обмене тканей зуба
- •47. Химический состав зуба белки липиды углеводы
- •48. Характеристика минерального матрикса и минерального обмена зуба
- •50. Коллагеновые белки зуба
- •52. Пульпа – особенности биохимического состава и обмена.
- •53. Десневая жмдкость
- •54. Ферменты зубного налета!
- •56. Роль витаминов и гормонов в процессе минерализации тканей зуба
- •57. Основные функции слюны.
- •59. Белки ротовой жидкости
51. Эмаль (enamelum) - ткань, покрывающая коронку зуба, является самой твердой в организме. На жевательной поверхности ее толщина достигает 1,5— 1,7 мм, на боковых поверхностях она значительно тоньше и сходит на нет к шейке, в месте соединения с цементом.
Структура эмали. Основным структурным образованием эмали являются эмалевые призмы диаметром 4 - 6 мкм. Длина призмы соответствует толщине слоя эмали и даже превышает ее благодаря извилистому направлению. Эмалевые призмы, концентрируясь в пучки, образуют S-образные изгибы. Вследствие этого на шлифах эмали выявляется оптическая неоднородность (темные или светлые полосы): в одном участке призмы срезаны в продольном направлении, в другом — в поперечном (полосы Гунтера—Шрегера). Кроме того, на шлифах эмали, особенно после обработки кислотой, видны линии, идущие в косом направлении и достигающие поверхности эмали, так называемые линии Рвтциуса. Их образование связывают с цикличностью минерализации эмали в процессе ее развития. По существующим представлениям, в указанных участках минерализация менее выражена, и в процессе локального воздействия кислоты в этих участках наступают наиболее ранние и выраженные изменения.
Эмалевая призма имеет поперечную исчерченность, которая отражает суточный ритм осложнений минеральных солей. Сама призма в поперечном сечении, в большинстве случаев, имеет аркадообразную форму или форму чешуи , но может быть полигональной, округлой или гексагональной.
Ранее считали, что вокруг каждой призмы имеется оболочка, содержащая большое количество органического вещества. С помощью более современных методик, в частности электронной микроскопии, установлено, что межпризменное вещество эмали состоит из таких же кристаллов, как и сама призма, но отличается их ориентацией Органическое вещество эмали обнаруживается в виде тончайших фибриллярных структур. Существует мнение, что органические волокна определяют ориентацию кристаллов призмы эмали.
В эмали зуба, кроме указанных образований, встречаются ламеллы, пучки и веретена. Ламеллы (пластинки) проникают в эмаль на значительную глубину, эмалевые пучки — на меньшую. Эмалевые веретена — отростки одонтобластов — проникают в эмаль через дентино-эмалевое соединение.
Основной структурной единицей призмы считаются кристаллы апатитоподобного происхождения, которые плотно прилежат друг к другу, но располагаются под углом. Считают, что размеры кристаллов с возрастом увеличиваются. Структура кристалла обусловлена величиной элементарной ячейки. Кристаллы гидроксиапатита и фторапатита имеют спои параметры.
Химический состав. Эмаль зубов состоит из апатитов многих типов, однако основным является гидроксиапатит — Са10(РО4)6(ОН)2. Неорганическое вещество в эмали представлено (%): гидроксиапатитом — 75,04; карбонатапа-титом — 12,06; хлорапатитом — 4,39; фторапатитом — 0,63; карбонатом кальция — 1,33; карбонатом магния — 1,62. В составе химических неорганических соединений кальций составляет 37 %, а фосфор — 17 %.
Состояние эмали зуба во многом определяется соотношением Са/Р как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под воздействием ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается также при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба и, следовательно, о неодинаковой подверженности различных участков поражению кариесом.
В белках эмали определены следующие фракции: растворимая в кислотах и ЭДТА — 0,17 %, нерастворимая — 0,18 %, пептиды и свободные аминокислоты — 0,15 %. По аминокислотному составу эти белки, общее количество которых составляет 0,5 %, имеют признаки кератинов. Наряду с белком в эмали обнаружены липиды (0,6 %), цитраты (0,1 %), полисахариды (1,65 мг углеводов на 100 г эмали).
Деминерализация – это первичное разрушение эмали при кариесе, которое происходит при местном снижении pH ниже 4.5. К счастью, такого кратковременного снижения pH недостаточно для того, чтобы вызвать серьёзные изменения в минеральном составе эмали. Это связано с тем, что спустя 30 минут pH зубной бляшки возвращается к прежнему значению (кривая Стефана). Однако при обильном и главное частом употреблении сахарозы на поверхности эмали в течение длительного времени создаётся критически низкое значение pH – ниже 4.5, что приводит к деминерализации эмали. Важно знать, что зрелая (кариесактивная) бляшка выделяет в два раза больше кислот, чем незрелая (кариеснеактивная). Следовательно, необходимо как можно тщательнее чистить зубы в течение 2-3 минут, утром и вечером. Таким образом, с помощью зубной щётки механическим образом разрушается бляшка, не давая ей созревать и выделять большое количество кислот.
В случае, когда кариесогенные факторы в полости рта не устраняются, очаговая деминерализация продолжается, что в конечном итоге приводит к образованию кариозной полости.
Химия процесса деминерализации
Основной компонент эмали, дентина и цемента – гидроксиапатит, Ca10(PO4)6(OH)2. В нейтральной среде данный компонент находится в равновесии с ротовой жидкостью, которая перенасыщена ионами Ca2+ и PO43-.
Гидроксиапатит становится очень чувствительным к ионам водорода при низких значениях pH (5.5 и ниже). Ионы H+ вступают в реакцию с фосфатной группой в гидратном слое. Происходит химическая реакция, в результате которой ионы PO43- превращаются в ионы HPO42-. Равновесие связей в кристаллах гидроксиапатита нарушается, что ведёт к их разрушению – таким образом, происходит деминерализация.
49. Щелочная и кислая фосфатаза в минеральном обмене тканей зуба
Неорганическая часть
В состав костей входит 99% всего кальция организма, 87% фосфора, ~ 60% магния и -25% натрия. Кальций в костях находится в форме минерала гидроксиапатита, примерный состав которого Са10(РО4)6(ОН)2. Гидроксиапатит образует кристаллы, имеющие обычно размер 20 × 5 × 1,5 нм. В костной ткани содержится много микроэлементов, таких как медь, стронций, барий, цинк, фтор и др., которые играют важную роль в обмене веществ в организме. Минеральная часть костей включает также карбонаты, гидроксиды и цитраты.
Минеральный состав зуба различен в разных его частях. Твёрдые части зуба (эмаль, дентин и цемент) содержат от 70% (цемент и дентин) до 96 - 97% (эмаль) неорганических веществ. Основную часть этих веществ составляют фосфат кальция, входящий в состав кристаллов гидроксиапатита (75%), а также карбонат и фторид кальция.
Мягкие части зуба (пульпа и периодонт) не относят к тканям с высокой степенью минерализации. Пульпа состоит из рыхлой волокнистой соединительной ткани (такая ткань находится практически во всех органах и образует их строму, или каркас), а периодонт образован плотной волокнистой соединительной тканью, которая также входит в состав сухожилий и связок.
Органическая часть
Органические вещества костного матрикса представлены белками, липидами и небольшим количеством протеогликанов.
Основной белок костной ткани - коллаген I типа (90 - 95%). Кроме него, в матриксе костей присутствуют такие белки, как коллаген V типа, остеонектин, остеокальцин, так называемые морфогенетические белки кости (BMP) и ферменты - щелочная фосфатаза (в остеобластах) и кислая фосфатаза (в остеокластах). Оба эти фермента служат маркёрами соответствующих клеток костной ткани. Углеводная часть протеогликанов костного матрикса представлена дерматан- и кератансульфатами.
Главный компонент органических веществ зубной ткани - коллаген I типа. Углеводы и липиды присутствуют в небольших количествах. Содержание органических веществ в твёрдых частях зуба варьирует от 2% (эмаль) до 30% (дентин и цемент). Содержание органических веществ в мягких частях зуба такое же, как в соответствующих видах соединительной ткани.
47. Химический состав зуба белки липиды углеводы
Твердые ткани зуба состоят из органического, неорганического веществ и воды.
По химическому составу эмаль состоит из 96 % неорганических веществ, 1 % органических веществ и 3% воды.
Минеральную основу эмали составляют кристаллы апатитов. Кроме главного — гидроксиапатита (75 %), в эмали содержится карбонатапатит (19 %), хлорапатит (4,4 %), фторапатит (0,66 %). Менее 2 % массы зрелой эмали составляют неапатитные формы.
Основными компонентами эмали являются гидроксиапатит Са10(Р04)в(ОН)2 и восьмикальциевый фосфат — Са8Н2(Р04)6 х 5Н20. Могут встречаться и другие типы молекул, в которых содержание атомов кальция варьирует от 6 до 14. Молярное отношение Са/Р в гидроксиапатите равно 1,67. Однако в природе встречаются гидроксиапатиты с отношением Са/Р от 1,33 до 2,0.
Одна из причин этого — замещение Са в молекуле гидроксиапатита на Cr, Ba, Mg и другие элементы.
Важное практическое значение имеет реакция замещения ионами фтора, в результате которой образуется гидроксифторапатит, обладающий большей резистентностью к растворению. Именно с этой способностью гидроксиапатита связывают профилактическое действие фтора.
Органические вещества эмали состоят из белков, липидов, углеводов. Вода занимает свободное пространство в кристаллической решетке, а также располагается между кристаллами.
Дентин состоит приблизительно из 70 % неорганических веществ в виде апатитов и около 30 % органических веществ и воды. Органическую основу дентина составляют коллаген, а также небольшое количество •мукополисахаридов и жира.
Цемент по твердости значительно уступает эмали и отчасти дентину. Он состоит из 66 % неорганических веществ и 32 % органических веществ и воды. Из неорганических веществ преобладают соли фосфата и карбоната кальция. Органические вещества представлены главным образом коллагеном.
Общие сведения о периодонте
Периодонт — сочетание нескольких окружающих и поддерживающих зуб тканей, связанных в своем развитии, топографии и функции.
Периодонт включает десну, цемент, периодентальную связку и собственно альвеолярную кость. Условно его можно разделить на две большие группы: аппарат прикрепления и десну.
Органические вещ-ва эмали (1,6%) представлены в основном белками. Кроме них в эмали содерж. липиды, углеводы, лактат, цитрат и свободные аминокислоты. Белки органического матрикса эмали по аминокислотному составу преимущественно относятся к кератиноподобным белкам, но в отличие от кератина они богаты серином, в основном в виде серин-фосфата и имеют небольшой молекулярный вес. Коллаген в эмали обнаружен в виде следов.
Сравнительно недавно в структуре эмали доказано наличие гликопротеидов, также небольшое кол-во Са-связывающего белка (гаммакарбоксиглутаматный белок), этот белок с достаточно высокой емкостью и склонностью к агрегации до тетрамеров в нейтральной среде. Содержание белка в эмали сост. 1,3%.
Углеводный состав эмали и дентина представлен в основном гликогеном. Из углеводных компонентов в эмали обнаружили глюкозу, маннозу, ксилозу. Обычно они связаны с белками, т. е. входят в состав гликопротеидов эмали, частично в свободном виде. В поверхности эмали содержится в 10 раз больше углеводов, чем в глубоких слоях – это говорит о том, что приток идет за счет ротовой жидкости. Гликопротеиды играют существенную роль и особенно в дентине, где их больше в динамической устойчивости твердых тканей зуба, поскольку именно гликопротеиды осущ. химическую связь с белками, углеводами, минеральными компонентами твердых тканей зуба – все это имеет значение в реминерализации.
Липиды эмали (0,2%) также участвуют в процессах минерализации и реминерализации. Считают, что реминерализация эмали, в том числе при кариесе, возможна только при сохранившейся структуре органического матрикса.
Среди хим. компонентов эмали и дентина в сравнительно большом кол-ве обнаружен цитрат. В эмали его примерно 0,1 % в дентине – 0,9%. Обнаружен лактат. Оба принимают участие в процессах минерализации.