Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Геофизические исследования скважин_bis.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
648.12 Кб
Скачать

Аппаратура и методика каротажа

Аппаратура  ГК   имеет,   в   принципе,   такое  же  устройство,   как   и полевые  радиометры. 

Запись показаний производится в единицах мощности экспозиционной дозы излучения (МЭД), выраженных в мкР/час.

Как правило, каротажные радиометры являются двухканальными и, кроме канала ГК, содержат еще один канал, предназначенный для одновременной записи еще одной диаграммы - НГК, ГГК или ГНК.

Современные каротажные радиометры обеспечивают возможность не только определения интегральной интенсивности Iγ, но и возможность спектрометрии, т.е. определения энергии поступающих на детектор γ-квантов, что позволяет определить, с каким ЕРЭ связана радиоактивность горной породы. Для этого один канал радиометра настраивают на энергию основной линии γ-излучения Ra226 - 1,76 МэВ, другой - на основную линию    Тh232 - 2,6 МэВ  и третий - на энергию γ-излучения  К40 - 1,46 МэВ.

При выполнении ГК важным моментом является соблюдение оптимальной скорости движения скважинного снаряда. Скорость каротажа должна быть такой, чтобы при движении детектора против пласта минимальной интересующей исследователя мощности h показания радиометра успели достичь максимальных значений Iγпл. При более высокой скорости, аномалия ГК получается меньшей интенсивности и растянутой по глубине. Оптимальную скорость каротажа вычисляют, исходя из мощности пластов h в метрах и постоянной времени τя  в секундах по формуле:  

Vопт = 1800h/τя*м/час.

В общем случае скорость ГК не должна превышать 360-400 м/час.

 

Интерпретация результатов

Качественная интерпретация диаграмм ГК заключается в литологическом расчленении разреза, которое основано на различии горных пород по их радиоактивности. В общем случае однозначное определение пород по одним лишь диаграммам ГК невозможно и решать эту задачу следует при комплексном использовании диаграмм всех видов каротажа (КС, ПС, НГК, АК и др.).

Нейтронный гамма-каротаж (НГК)

       Метод НГК является одним из ведущих методов исследования скважин нефтяных и газовых месторождений. В комплексе с другими методами нейтронный гамма-каротаж применяется для литологического расчленения разрезов скважин, выделения коллекторов, оценки пористости, отбивки водонефтяного и газонефтяного контактов и т. п.

Физические основы метода.

 В нейтронном гамма-каротаже измеряется ис­кусственно вызванное гамма-излучение горных пород. Для возбуждения этого излучения стенки скважины бомбардируют нейтронами.

 Скважинный снаряд НГК включает в себя источник нейтронов и детектор гамма-излучения.

В качестве источников нейтронов в России применяют обычно ампулы, заполненные смесью порошкообразного бериллия и какой-либо соли полония. Под воздействием α-частиц, испускаемых ядрами полония, происходит реакция:         

4Be9 + 2He4 = 6C12 + 0n1 + γ

Ро-Ве источник дает около 2*106 нейтронов в секунду на 1 г полония и примерно столько же гамма-квантов. Большая часть нейтронов - быстрые, с энергиями от 3,5 до 6 МэВ.

Поскольку нейтроны не имеют электрического заряда, проникающая способность их очень велика. Сталкиваясь с ядрами атомов горных пород, нейтроны теряют часть своей энергии, замедляются. При этом большая часть кинетической энергии теряется при соударении с ядрами легких атомов, главным образом, водорода. После примерно 25 соударений с ядрами водорода нейтроны замедляются до "тепловых" энергий (около 0,025 эВ) и диффундируют через породы, пока не будут захвачены. Тепловые нейтроны могут захватываться ядрами всех элементов, кроме Не. Низкие сечения захвата тепловых нейтронов имеют О и С. Аномально высокие сечения захвата у таких элементов, как TR, Сd, В, С1 и некоторых других. Акт захвата теплового нейтрона сопровождается испусканием γ-квантов, которые образуют так называемое γ-излучение радиационного захвата (ГИРЗ). Часть этих γ-квантов фиксируется детектором в скважинном снаряде НГК.

Кроме радиационного гамма-излучения    (I),  детектор будет фиксировать также и гамма-кванты другого происхождения. Суммарную зарегистрированную интенсивность гамма-излучения можно представить в виде ряда:

IΣ   = I+ Iу + Iф + Iγγ ,

где  Iγ - естественное гамма-излучение пород;

        Iф - фоновое гамма-излучение источника нейтронов;

        Iγγ - гамма-излучение  источника,  претерпевшее  комптоновское рассеяние в породах и обсадных трубах скважины.

 

 

Рис. 5.4. Устройство зонда нейтронного гамма-каротажа

 

Для выделения исследуемой составляющей I приходится прибегать к уменьшению влияния остальных составляющих Iу, Iф, Iγγ. Для уменьшения влияния естественной радиоактивности  Iу выбирают, с одной стороны, мощность источника нейтронов такой, чтобы вызванное им гамма-излучение было, по крайней мере, на порядок больше естественного. С другой стороны, уровень естественной радиоактивности может быть учтен вычитанием показаний ГК из диаграмм НГК. Для ослабления фонового гамма-излучения источника  Iф между источником и детектором располагают мощный свинцовый экран. Для поглощения мягкого рассеянного излучения  Iγγ детектор излучения помещают в стальную гильзу. Выделенная таким образом составляющая I  зависит, в основном, от содержания водорода в исследуемой среде. Когда скважинный снаряд проходит через формации с высоким содержанием водорода (в составе воды или нефти и газа), уровень наведенного гамма-излучения будет низким, т. к. большинство нейтронов будет замедлено и поглощено в непосредственной близости от источника и только некоторые из гамма-квантов смогут достичь детектора и будут зарегистрированы.

Если породы содержат мало водорода или не содержат вообще, нейтроны успевают распространиться далеко от источника прежде, чем они будут замедлены и захвачены. При длине зонда 0,6 м и выше большая часть нейтронов будет поглощена где-то вблизи детектора гамма-излучения, и на диаграммах НГК будет наблюдаться высокий уровень интенсивности ГИРЗ.

Лекция 6. Интерпретация результатов НГК

Литологическое расчленение разрезов скважин. Как уже отмечалось, метод НГК дифференцирует породы по водородосодержанию.

Как известно, среди осадочных пород наибольшее количество водорода содержат глины в составе химически связанной и поровой воды. Общее содержание воды в глинах может достигать 44%. Поэтому на диаграммах НГК глины выделяются самыми низкими значениями и представляют собой надежный "базовый" или опорный горизонт.

Самые же высокие уровни радиационного гамма-излучения наблюдаются против плотных малопористых известняков, которые могут служить другим опорным горизонтом, с минимальной пористостью (Kn ≈ 1%).

Песчаники и пески не содержат химически связанной воды, вследствие чего даже самые пористые из них отмечаются более высокими значениями НГК, чем глины. Среди гидрохимических осадков наименьшими значениями I выделяются гипсы благодаря высокому (до 48%) содержанию кристаллизационной воды, наибольшими - ангидриты.

Уровень записи Ix над пластом-коллектором (песчаник) занимает промежуточное положение между глинами и известняками и зависит от пористости и глинистости коллектора.

Определение границ и мощностей пластов. Контакты и мощности пластов в НГК определяются так же, как и в ГК, главным образом, по правилу полумаксимума аномалии.