Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по дисциплине «Автоматизированн...doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.01 Mб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковская национальная академия городского хозяйства

КОНСПЕКТ ЛЕКЦИЙ

по дисциплине

«Автоматизированный электропривод»

(для студентов 4 курса дневной и заочной форм обучения по специальности 6.090603 – «Электротехнические системы электроснабжения»)

Харьков - ХНАГХ - 2007

Конспект лекций по дисциплине «Автоматизированный электропривод» (для студентов 4 курса всех форм обучения специальности 6.090603 – «Электротехнические системы электроснабжения»). Авт. Гаряжа В.Н., Фатеев В.Н. – Харьков: ХНАГХ , 2007. – 104 стр.

Авторы: В.Н. Гаряжа, В.Н. Фатеев

Рецензент: В.Н. Ковалев

Рекомендовано кафедрой электроснабжения городов, протокол №6 от 29.01.07

СОДЕРЖАНИЕ

Общая характеристика конспекта лекций

Содержательный модуль 1. Автоматизированный электропривод – основа развития производительных сил Украины . . . . . . . . . . . .

6

Лекция 1.

1.1.

Развитие электропривода как отрасли науки и техники . . . . . .

6

1.2.

Принципы построения систем управления

автоматизированным электроприводом . . . . . . . . . . . . . . . . . . .

8

Лекция 2.

1.3.

Классификация систем управления АЭП . . . . . . . . . . . . . . . . . .

13

Содержательный модуль 2. Механика электропривода . . . . . . . . . .

18

Лекция 3.

2.1.

Приведение моментов и сил сопротивления, моментов инерции . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

Лекция 4.

2.2.

Уравнение движения электропривода . . . . . . . . . . . . . . . . . . . . .

21

Лекция 5.

2.3.

Механические характеристики двигателя постоянного тока независимого возбуждения. Двигательный режим . . . . . . . . . . .

26

Лекция 6.

2.4.

Механические характеристики двигателя постоянного тока независимого возбуждения. Режим электрического торможения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

Лекция 7.

2.5.

Механические характеристики двигателя постоянного тока последовательного возбуждения. Двигательный режим. . . . . .

44

Лекция 8.

2.6.

Механические характеристики двигателя постоянного тока последовательного возбуждения. Режим электрического торможения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

Лекция 9.

2.7.

Механические характеристики асинхронных двигателей. Двигательный режим. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

Лекция 10.

2.8.

Механические характеристики асинхронных двигателей. Режим электрического торможения. . . . . . . . . . . . . . . . . . .. . . . .

57

Лекция 11.

2.9.

Механические и электрические характеристики синхронных двигателей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

Содержательный модуль 3. типовые узлы схем автоматического управления двигателями. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

72

Лекция 12.

3.1.

Принципы автоматического управления пуском и торможением двигателей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

72

Лекция 13.

3.2.

Типовые узлы схем автоматического управления пуском ДПТ.

77

Лекция 14.

3.3.

Типовые узлы схем автоматического управления торможением ДПТ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

82

Лекция 15.

3.4.

Типовые узлы схем автоматического управления пуском двигателей переменного тока. . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

Лекция 16.

3.5.

Типовые узлы схем автоматического управления торможением двигателей переменного тока. . . . . . . . . . . . . . . .

95

Лекция 17.

3.6.

Узлы электрической защиты двигателей и схем управления. . .

98

Общая характеристика конспекта лекций

Автоматизированный электропривод – главный потребитель электроэнергии. В промышленно – развитых странах более 65% вырабатываемой электроэнергии преобразовывается электроприводом в механическую энергию. Поэтому развитие и совершенствование электропривода, являющегося основой энерговооруженности труда, способствует росту производительности и повышению эффективности производства. Знание свойств и возможностей электропривода позволяет инженеру – электрику обеспечить рациональное использование электропривода с учетом требований, как технологических машин, так и систем электроснабжения. Предмет «Автоматизированный электропривод» изучается в седьмом семестре четвертого года обучения. Учебным планом специальности «Электротехнические системы электропотребления» на него выделены четыре кредита. Они заполнены шестью содержательными модулями, которые изучаются во время лекционных и практических занятий, при выполнении лабораторных работ и расчетно-графического задания.

В данном конспекте лекций изложен материал для изучения первых трех содержательных модулей предмета «Автоматизированный электропривод». В первом содержательном модуле автоматизированный электропривод рассматривается как основа развития производительных сил Украины. Во втором изучаются механические характеристики двигателей, показывающие возможности двигателя при работе, как в двигательном режиме, так и в режиме электрического торможения. В третьем модуле изучаются типовые узлы схем автоматического управления двигателем. На основании изученных во втором модуле свойств двигателей, типовые узлы обеспечивают автоматический пуск, торможение и реверс двигателей в функциях времени, скорости и тока при прямом или косвенном контроле названных величин. Конструктивно типовые узлы объединяются в виде станций управления. Долевое участие станций управления в общем количестве использующихся в Украине электроприводов превышает 80%.

Содержательный модуль 1. Автоматизированный электропривод – основа развития производительных сил Украины Лекция 1.

1.1. Развитие электропривода как отрасли науки и техники

С давних времён человек стремился заменить тяжёлый физический труд, который являлся источником механической энергии (МЭ), на работу механизмов и машин. Для этого на транспорте и на сельскохозяйственных работах, на мельницах и оросительных системах он использовал мускульную силу животных, энергию ветра и воды, а позже – химическую энергию топлива. Так появился привод – устройство, состоящее из трёх существенно различных частей: двигателя (Д), механического передаточного устройства (МПУ) и технологической машины (ТМ).

Назначение двигателя: преобразование энергии различных видов в механическую энергию. МПУ предназначено для передачи МЭ от двигателя к ТМ. Оно не влияет на количество передаваемой МЭ (без учёта потерь), но может изменять её параметры и для согласования видов движения выполняется в виде ременной, цепной, зубчатой или других механических передач.

В технологической машине МЭ используется для изменения свойств, состояния, формы или положения обрабатываемого материала или изделия.

В современных приводах в качестве источника МЭ используются различные электрические двигатели (ЭД). Они преобразуют электрическую энергию (ЭЭ) в механическую и поэтому привод получил название электропривода (ЭП). Его функциональная схема приведена на рис. 1.1. В её состав, кроме названых элементов, входит управляемый преобразователь (П), с помощью которого ЭЭ от сети подаётся к ЭД.

Изменяя сигнал управления преобразователем Uу, можно изменять количество ЭЭ, поступающей от сети к ЭД. В результате этого будет изменяться количество МЭ, вырабатываемой двигателем и получаемой ТМ. Это, в свою очередь, приведёт к изменению технологического процесса, эффективность которого характеризуется регулируемой величиной y(t).

Приоритет в создании электропривода принадлежит русским учёным

Б.С. Якоби и Э.Х. Ленцу, которые в 1834 году изобрели двигатель постоянного тока, а в 1838 году применили его для приведения в движение катера. Однако несовершенство двигателя и неэкономичность источника электрической энергии (гальванической батареи) не позволили этому электроприводу найти практическое применение.

В середине ХІХ века попытки применения ЭП с двигателем постоянного тока для типографских и ткацких машин предпринимались учёными Франции и Италии. Однако система постоянного тока не давала удовлетворительного решения. К 1890 году только 5 % общей мощности двигателей приводов составляли электрические двигатели.

Широкое применение электропривода связано с изобретением в 1889-1891 годах русским инженером Доливо–Добровольским системы трёхфазного переменного тока и трёхфазного асинхронного двигателя. Простота трёхфазной системы, возможность централизованного производства электроэнергии, удобство её распределения привели к тому, что к 1927 году уже 75 % общей мощности двигателей приводов составляли электрические двигатели.

В настоящее время в ведущих отраслях промышленности отношение установленной мощности электроприводов к общей установленной мощности приводов с двигателями всех видов (тепловых, гидравлических, пневматических) приближается к 100 %. Это определяется тем, что ЭД изготавливаются на разнообразные мощности (от сотых долей ватта до десятков тысяч киловатт) и скорости вращения (от долей оборота вала в минуту до нескольких сотен тысяч оборотов в минуту); ЭП работает в среде агрессивных жидкостей и газов при низких и высоких температурах; благодаря управляемости преобразователя, ЭП легко регулирует ход технологического процесса, обеспечивая различные параметры движения рабочих органов ТМ; он обладает высоким к.п.д., надёжен в эксплуатации и не загрязняет окружающую среду.

В настоящее время суммарная установленная мощность электрических генераторов Украины превышает 50 млн. кВт. Для распределения такой мощности на всех уровнях напряжения созданы и электрические сети.

Однако в связи со спадом, в первую очередь, промышленного производства обеспечение реального потребления электроэнергии на Украине осуществляется за счет половины указанной мощности. Такой существенный энергетический запас является надежной основой для развития производственных сил Украины, связанного с внедрением новых энергосберегающих технологий, выпуском современной высокотехнологичной продукции, дальнейшим развитием автоматизации и механизации производства. Решение всех, без исключения, названных задач обеспечивается применением различных систем электропривода, увеличением потребления электроприводом электрической энергии, которое в существующей структуре потребления уже приближается к 70%.