
- •50. Основные требования к распределительным устройствам и задачи их эксплуатации
- •56. Эксплуатация разъединителей, отделителей и короткозамыкателей
- •55. В эксплуатации к разъединителям предъявляются следующие требования:
- •66. Эксплуатация реакторов
- •68. Эксплуатация установок для приготовления сжатого воздуха и воздухораспределительной сети
- •76. Приемка кабельных линий в эксплуатацию
- •77. Коррозия металлических оболочек кабелей и меря защиты от их разрушения
- •78. Профилактические испытания кл
- •79. Определение мест повреждений
- •83. Последовательность основных операций
- •84. Техника операций с коммутационными аппаратами
- •85. Переключения в схемах релейной защиты и автоматики
- •88. Переключения при выводе в ремонт выключателей вводе их в работу после ремонта
- •87. Вывод в ремонт системы сборных шин
- •1.Особенности энергетического производства
- •16. Осмотры и проверки генераторов
- •19. Допустимые перегрузки генераторов
- •23. Обслуживание щеточных аппаратов
- •31. Допустимые режимы работы двигателей по напряжению
- •32. Надзор и уход за двигателями
- •33. Неисправности эд (механические, электрические). Описание причины неисправностей.
- •35. Нормальные режимы работы трансформаторов. Автотрансформаторный режим.
- •36. Допустимые нагрузки и перегрузки трансформаторов (по току, по нагрузочной способности, 1%-ные перегрузки).
- •38. Контроль за работающими трансформаторами (ток, напряжение, температура).
- •39. Порядок включения трансформатора на параллельную работу.
- •43. Опишите защиту масла от увлажнения и окисления (азотная, пленочная защиты).
- •47. Обслуживание устройств регулирования напряжения.
43. Опишите защиту масла от увлажнения и окисления (азотная, пленочная защиты).
Азотная защита устраняет контакт масла в расширителе трансформатора с атмосферным воздухом, предотвращая тем самым загрязнение и окисление масла. Среди многих известных систем азотной защиты чаще встречается система низкого давления (давление азота не более 3 кПа) с применением эластичной емкости (рис. 1.26). Основным элементом системы является эластичный резервуар 6, выполняемый из газонепроницаемого химически стойкого материала (резинотканевая пластина) и соединяемый газопроводом с расширителем трансформатора 1. Система заполняется постоянным количеством азота, давление которого незначительно превышает нормальное атмосферное давление при всех температурных изменениях уровня масла в расширителе. Так, при нагреве трансформатора, когда уровень масла в расширителе поднимается, азот, заполняющий его, переходит в эластичный резервуар, объем которого увеличивается. При понижении уровня масла в расширителе азот переходит в него из резервуара, при этом стенки эластичного резервуара опадают. Для поглощения влаги, которая может по тем или иным причинам поступить в газовую систему из масла или изоляции, а также из газового баллона 8 во время подпитки системы азотом, служит газоосушитель 4. На подстанциях с двумя и более трансформаторами применяется групповая азотная защита с питанием от одного эластичного резервуара. Все элементы и узлы газовой системы трансформаторов тщательно уплотняются, проходят опрессовку азотом при давлении 50 кПа. Масло в трансформаторе должно быть нейтральным, сухим, дегазированным и азотированным. Дегазация масла производится под вакуумом на специальных установках, насыщение азотом продувками. При трех-четырех продувках кислород в масле практически полностью замещается азотом. Содержание кислорода в газовом пространстве расширителя должно быть не более 1 %. При большем содержании кислорода азотная защита масла неэффективна. Схема азотной защиты масла в трансформаторе с применением эластичной емкости: 1 - расширитель трансформатора; 2 - вентиль продувки азотом надмасляного пространства; 3 - кран питания системы азотом; 4 - осушитель силикагелевый (или цеолитовый); 5 -вентиль эластичного резервуара; 6 - эластичный резервуар; 7 - кран подключения баллона с редуктором и манометрами давления; 8 - газовый баллон; 9 - защитный металлический кожух; 10 - сливной кран; 11 - газовое реле; 12 — редуктор Пленочная защита основана на герметизации масла трансформатора под вижной пленкой, помещаемой в расширителе трансформатора и изолирующей масло в расширителе от соприкосновения с атмосферным воздухом. Конструктивно пленочная защита выполняется в виде эластичного компенсатора, способного изменять свой объем при всех температурных колебания» объема масла в трансформаторе, или в виде эластичной мембраны, плавающей на поверхности масла и свободно изгибающейся при изменениях объема масла в расширителе. В обоих случаях в надмасляном пространстве трансформатора сохраняется нормальное атмосферное давление. Уровень масла в расширителе определяется по стрелочному указателю (специальной конструкции), рычаг которого опирается на поверхность пленки. Трансформатор с пленочной защитой заполняется дегазированным маслом. Необходим периодический контроль газосодержания масла. К недостаткам пленочной защиты относят сложность размещения и герметизации эластичных пленок внутри расширителя, а также невозможность повседневного визуального контроля за их исправностью. Герметичность пленки проверяется при ремонте трансформатора. Внеочередная проверка ее состояния должна проводиться в случае срабатывания газовой защиты трансформатора. Антиокислительные присадки. Свежее, нормально очищенное масло содержит смолы, являющиеся естественными антиокислителями; масло, регенерированное адсорбентами, утрачивает их. В эксплуатации повышение стабильности регенерированных масел достигается совместным применением термосифонных фильтров и специальных антиокислительных присадок. В Советском Союзе в качестве антиокислителей широко используются ионол, амидопирин и другие вещества. Ионол, будучи введенным в масло в количестве, равном 0,2 % массы масла, эффективно задерживает окисление. Вместе с тем он не извлекается из масла адсорбентами. Ионол практически полностью предотвращает образование осадка в хорошо очищенных маслах. Амидопирин подобно ионолу задерживает образование кислот и осадка увеличивает срок службы примерно в 2—3 раза. Однако при введении в масло амидопирина термосифонные фильтры загружают только окисью алюминия, так как силикагель обладает способностью адсорбировать амидопирин. Защита масла во вводах. Для защиты от увлажнения масла во вводах применяются масляные затворы. Конструктивно их выполняют в виде цилиндра, разделенного на две части цилиндрической перегородкой, имеющей снизу отверстия для перетока масла из одной части в другую. Маслом заполняют менее половины цилиндра. Оно не имеет прямого контакта с маслом во вводе. Сверху воздушное пространство одной части затвора сообщается с воздушной подушкой в расширителе ввода, другой части — с атмосферой. Все температурные колебания объема масла и давления во вводе компенсируются изменением уровней запирающей жидкости в цилиндре затвора. Масляные затворы не устраняют, а лишь ограничивают влагообмен между маслом затвора, воздухом расширителя и маслом ввода. Более эффективной мерой предохранения масла является оснащение вводов с масляными затворами еще и воздухоосушителями. На рис. 7.36 показана головка маслонаполненного ввода с масляным затвором и воздухоосушителем. Средством, исключающим контакт масла с атмосферным воздухом и тем самым длительно обеспечивающим сохранение им высоких электроизоляционных свойств, является полная герметизация вводов (см. § 7.1).
45. Раскройте способы обслуживания систем охлаждения трансформаторов: осмотры, наблюдения за работой, технический уход. Поясните эффективность работы системы охлаждения, причины повышенного нагрева масла.
Элементами системы внутреннего охлаждения являются горизонтальные и вертикальные каналы в обмотках и магнитопроводе, а также специальные трубы и изоляционные щиты, создающие направленную циркуляцию масла по каналам. Все элементы системы внутреннего охлаждения находятся внутри бака трансформатора, поэтому визуальный контроль за их состоянием невозможен. Система наружного охлаждения включает маслоохладители, фильтры, насосы, вентиляторы и другое оборудование, расположенное снаружи трансформатора. За работой этого оборудования ведется систематический эксплуатационный надзор. Обслуживание систем охлаждения состоит в наблюдении за работой и техническом уходе за оборудованием, используемым в системе охлаждения. При техническом уходе руководствуются заводскими инструкциями и местными указаниями по эксплуатации оборудования. Осмотр систем охлаждения производится одновременно с осмотром трансформаторов. При осмотре проверяется целость всей системы охлаждения, т.е. отсутствие течей масла, работа радиаторов по их нагреву, определяемому на ощупь, работа охладителей охлаждения ДЦ - по их нагреву и по показаниям манометров, установленных вблизи патрубков маслоперекачивающих насосов, работа адсорбных фильтров — ощупыванием рукой, состояние креплений трубопроводов, охладителей. Насосов и вентиляторов, работа вентиляторов — по отсутствию вибрации, скрежета и задеваний крыльчаток за кожух. Технический уход за устройствами систем охлаждения включает в себя устранение обнаруженных при осмотрах неисправностей, замену износившихся деталей (лопаток насосов, лопастей вентиляторов, подшипников), чистку охладителей и вентиляторов, смазку подшипников, контроль сопротивления изоляции электродвигателей. При уходе за охладителями системы охлаждения Ц выполняются периодические очистки труб и водяных камер от ила и других отложений на поверхностях охлаждения. При осмотре шкафов автоматического управления охлаждением проверяется отсутствие нагрева и коррозии контактов, а также повреждений изоляции токоведущих частей аппаратуры, уплотнение днищ и дверей шкафов от проникновения в них пыли и влаги. Внеочередной осмотр автоматических выключателей в шкафах следует производить после каждого отключения ими тока КЗ, а также следует осматривать контакты магнитных пускателей и автоматических выключателей после автоматического отключения электродвигателей вентиляторов и насосов. При осмотрах необходимо руководствоваться требованиями общих правил техники безопасности, так как наличие напряжения на токопроводящих частях аппаратов и сборных узлов, не имеющих защитных кожухов, представляет опасность для персонала. Исправность схем питания двигателей охлаждения и действие АВР проверяются по графику не реже 1 раза в месяц. Эффективность работы систем охлаждения в целом проверяется по температуре верхних слоев масла в трансформаторе. При исправном охлаждении максимальные температуры масла не должны превышать в трансформаторах с охлаждением М и Д 95 °С, с охлаждением ДЦ при мощности до 250 MB А включительно 80 °С и при мощности выше 250 MB A 75 °С, у трансформаторов с охлаждением Ц температура масла на входе в маслоохладители не должна превышать 70 °С. За максимальную температуру масла здесь принимается температура масла под крышкой бака, измеренная при работе трансформатора с номинальной нагрузкой в течение 10—12 ч для трансформаторов с охлаждением М и Д и в течение 6—8 ч для трансформаторов с охлаждением ДЦ при неизменной температуре охлаждающего воздуха, равной 40 °С. Такой большой период времени наступления установившегося теплового режима у трансформаторов с охлаждением М и Д объясняется небольшим перепадом температур между обмотками и верхними слоями масла при сравнительно низких скоростях движения масла в баке. У трансформаторов с принудительной циркуляцией масла (охлаждение ДЦ) скорость перемещения масла в баке выше и перепад температур между обмотками и верхними слоями масла близок к расчетному превышению средней температуры обмоток над средней температурой масла, который составляет около 30 °С. В эксплуатации при номинальной нагрузке трансформатора температура верхних слоев масла редко достигает максимального значения. Однако если это имеет место, и особенно у трансформаторов, включаемых в работу после ремонта, то возможны следующие причины повышения нагрева масла для охлаждения М и Д: закрыты или не полностью открыты плоские краны радиаторов, из верхних коллекторов радиаторов не выпущен воздух при заполнении радиаторов маслом, сильно загрязнены наружные поверхности радиаторов. Для охлаждения Д кроме перечисленных могут быть названы следующие причины: в работе находятся не все вентиляторы, крыльчатки вентиляторов вращаются в обратную сторону. Для системы охлаждения ДЦ характерны следующие причины: рабочее колесо насоса вращается в обратную сторону, недостаточно число работающих вентиляторов, крыльчатки вентиляторов вращаются в обратную сторону, сильно загрязнены поверхности ребер трубок охладителей и т.д.
41. Защита трансформаторов от перенапряжений Защита изоляции трансформаторов от атмосферных и коммутационных перенапряжений осуществляется вентильными разрядниками. Применяются разрядники серий РВРД, РВМК, РВМГ, РВМ и др. На подстанциях до 220 кВ их обычно устанавливают на шинах или на присоединениях трансформаторов. На подстанциях 330 кВ и выше вентильные разрядники обязательно устанавливаются на каждом присоединении трансформатора, причем как можно ближе к трансформатору, чтобы повысить надежность грозозащиты и уберечь его от возможных коммутационных перенапряжений. Вентильными разрядниками защищают от перенапряжений незазем-ленные нейтрали трансформаторов 110—220 кВ. Это вызвано тем, что в настоящее время все трехфазные трансформаторы 110—220 кВ выпускаются со сниженной изоляцией нейтрали (по сравнению с классом изоляции линейного ввода). Так, у трансформаторов 110 кВ с регулированием напряжения под нагрузкой уровень изоляции нейтрали соответствует стандартному классу напряжения 35 кВ, что обусловливается включением со стороны нейтрали устройств РПН с классом изоляции 35 кВ. Трансформаторы 220 кВ также имеют пониженный уровень изоляции нейтрали. Во всех случаях это дает значительный экономический эффект и тем больший, чем выше класс напряжения трансформатора. Между тем на разземленных нейтралях таких трансформаторов могут появляться перенапряжения при однофазных КЗ в сети. Они могут оказаться под воздействием повышенных напряжений промышленной частоты при неполнофазных режимах коммутации ненагруженных трансформаторов. Для защиты разземленных нейтралей трансформаторов применяются вентильные разрядники на номинальное напряжение, соответствующее классу изоляции нейтрали. Неиспользуемые в эксплуатации (длительно неприсоединяемые к сети) обмотки трансформаторов низшего (среднего) напряжения обычно соединяются в треугольник (или звезду) и защищаются от перенапряжений вентильными разрядниками. Перенапряжения в неиспользуемых обмотках появляются в результате воздействия грозовых волн на обмотку ВН и перехода их на обмотку НН (СН) через емкость или индуктивность между обмотками. Для защиты неиспользуемой обмотки к вводу каждой ее фазы присоединяется вентильный разрядник. В нейтрали звезды также устанавливается вентильный разрядник. С переходом волн с одной обмотки на другую связывают также появление опасных для изоляции перенапряжений на отключаемой выключателем (или неиспользуемой) обмотке автотрансформатора. Чтобы избежать повреждений, изоляцию обмоток автотрансформаторов защищают вентильными разрядниками, устанавливаемыми на всех обмотках, имеющих между собой автотрансформаторную связь. Разрядники подключаются к соединительным шинам жестко, без разъединителей. Вентильные разрядники всех напряжений должны, как правило, постоянно находиться в работе в течение всего года. Их периодически осматривают. При осмотрах обращается внимание на целость фарфоровых покрышек, арми-ровочных швов и резиновых уплотнений. Поверхность фарфоровых покрышек должна содержаться в чистоте. Грязь на поверхности покрышек искажает распределение напряжения вдоль разрядника, что может привести к его перекрытию. Наблюдение за срабатыванием вентильных разрядников ведется по специальным регистрам. Они включаются последовательно в цепь разрядник — земля, и через них проходит импульсный ток, приводящий к срабатыванию регистра. В процессе эксплуатации вентильных разрядников выполняются измерения мегаомметром их сопротивления, а также тока проводимости при выпрямленном напряжении. Необходимость капитального ремонта вентильных разрядников определяется по результатам испытаний и осмотров.
45.Отбор проб и испытания масла. В процессе эксплуатации масло загрязняется механическими примесями, увлажняется, в нем накапливаются продукты окисления. При этом масло теряет свои электроизоляционные свойства, в результате чего снижается сопротивление изоляции оборудования. Масло окисляется под влиянием кислорода воздуха. Активность кислорода усиливается в присутствии влаги, попадающей в масло извне. Окислению способствует высокая температура, солнечный свет, присутствие металлов (особенно меди и ее сплавов), являющихся катализаторами окисления. Чем больше продуктов старения в масле, тем хуже его свойства. Поэтому большое значение приобретает систематическое наблюдение за состоянием масла в трансформаторах и аппаратах. Наблюдение ведется путем отбора проб и проведения лабораторных испытаний. При обнаружении изменения показателей по сравнению с установленными нормами принимаются меры по восстановлению утерянных маслом свойств. Это достигается очисткой, осушкой и регенерацией масла. Отбор проб производится в сухую погоду в промытые и хорошо просушенные стеклянные банки вместимостью 0,5 и 1 л. Различают три вида испытаний изоляционных масел: испытание на электрическую прочность, сокращенный анализ, полный анализ. Полному анализу подвергаются масла на нефтеперегонных заводах, а также масла после регенерации. Для эксплуатационного масла, находящегося в работе (залитого в оборудование), проводятся сокращенный анализ и испытание его электрической прочности. Масло должно удовлетворять следующим показателям качества: кислотное число — не более 0,25 мг КОН/г; содержание водорастворимых кислот и щелочей — не более 0,014 мг КОН/г для трансформаторов мощностью более 630 кВА и для герметичных маслонаполненных вводов, для негерметичных вводов напряжением до 500 кВ — 0,03 мг КОН/г; отсутствие механических примесей; падение температуры вспышки по сравнению с предыдущим анализом не более 5°С; взвешенный уголь в масле выключателей — не более одного балла; электрическая прочность масла (пробивное напряжение) для трансформаторов, аппаратов и вводов;Кроме того, свежее трансформаторное масло, поступающее с завода и предназначенное для заливки в оборудование, дополнительно проверяется на стабильность, тангенс угла диэлектрических потерь и натровую пробу.
Масло из трансформаторов с пленочной защитой при эксплуатации проверяется также на влагосодержание и газосодержание, а из трансформаторов с азотной защитой — только на влагосодержание. Масло из баковых выключателей 110 кВ и выше в процессе эксплуатации испытывается на пробивное напряжение, содержание механических примесей и взвешенного угля после выполнения ими предельно допустимого числа коммутаций тока КЗ.
Сокращенный анализ масла проводится в следующие сроки: масло из силовых трансформаторов мощностью более 6300 кВА и напряжением 6 кВ и выше, из измерительных трансформаторов напряжением выше 35 кВ и негерметичных маслонаполненных вводов — не реже 1 раза в 3 года; из герметичных вводов — при повышенных значениях угла диэлектрических потерь вводов; из силовых трансформаторов — при срабатывании газового реле на сигнал. Проверка масла из масляных выключателей производится при капитальном, текущем и внеплановом ремонтах. Очистка и сушка масла. Масло, не удовлетворяющее нормам на электрическую прочность в связи с его увлажнением или загрязнением механическими примесями, подвергается центрифугированию. Центрифугированием масло очищается не от всех загрязнений. Легкие волокна, частицы взвешенного угля, смолистые вещества остаются в масле вследствие небольшой разницы плотностей масла и примесей. Более глубокая очистка достигается при применении фильтр-пресса. При фильтровании масло под давлением 0,4—0,6 МПа продавливается насосом через пористую среду (бумагу) с большим количеством капилляров, задерживающих в себе частички воды и примесей размером более 10—15 мкм. Экономичным и совершенным способом является сушка масла распылением в вакууме. Сущность метода заключается в том, что в специальной вакуумной камере производится тонкое распыление увлажненного масла. Образующиеся при этом пары воды отсасываются вакуумным насосом, а осушенное масло выпадает в виде капель на дно камеры. Получил распространение способ сушки масла при помощи синтетического цеолита. По составу цеолиты являются водными алюмосиликатами кальция или натрия. Цеолиты содержат огромное количество пор, имеющих размеры молекул. При пропускании сырого масла через слой высушенного цеолита молекулы воды поглощаются его порами и удерживаются в них. Устройство цеолитовой установки показано на рис. 7.31. Для осушки эксплуатационного масла требуется примерно 0,1—0,2 % цеолита от массы масла.