- •11 Атмосферное давление, его влияние на организм.
- •14 Электрическое состояние атмосферы(атмосферное электричество,инизация воздуха,электрическое поле)и его гиг.Значение
- •15 Сочетанное действие факторов внешней среды.Особенности адаптации детского организма к действию негативных факторов.Система реагирования и регуляции в организме при действии физ факторов внеш среды
- •21. Основные источники и загрязнители атмосфер¬ного воздуха населенных мест. Меры по охране атмосферного воздуха от загрязнений. Принципы установления пдк вредных веществ в атмосфер¬ном воздухе.
- •26. Искусственные источники уф-радиации
- •27. Биологическое действие ик на организм.
- •28. Показания и противопоказания к использованию ик-лучей. Индивидуальная оценка чувствительности организма к действию ик- радиации.
- •29. Биологическое значение видимого участка спектра
- •30. Принцип нормирования естественного освещения
- •Вопрос 32. Физиологическое, санитарно-гигиеническое и нардно-хозяйственное значение воды. Нормы водопотребления для городского и сельского населения. Системы водоснабжения.
- •Вопрос 33. Заболевания связанные с употреблением воды. Принципы профилактики заболеваний водного характера. Загрязнение водоисточников как экологическая проблема.
- •Вопрос 34санитарная характеристика центролизованной и децентрализованной систем водоснабжения. Гигиенические нормы.
- •35.Зоны санитарной охраны водоисточников. Методы улучшения качества питьевой воды. Санитарная охрана водоемов.
- •36.Основные методы очистки питьевой воды (осветление и обесцвечивание, обеззараживание), их гигиеническая характеристика.
- •37.Характеристика специальных методов улучшения качества питьевой воды. Основные антропогенные загрязнители водоемов.
21. Основные источники и загрязнители атмосфер¬ного воздуха населенных мест. Меры по охране атмосферного воздуха от загрязнений. Принципы установления пдк вредных веществ в атмосфер¬ном воздухе.
Основные источники и загрязнители атмосферного воздуха населенных мест.
В процессе производственной деятельности человека различные природ¬ные вещества подвергаются обработке с образованием разнообразных загряз¬нителей атмосферного воздуха.Рассмотрим основные источники загрязнения воздуха населенных мест и образуемые ими загрязнители.Источники загрязнения воздуха
1). Автомобильный транспорт. Выхлопные газы автомобилей: угарный газ (СО), оксид азота (NO),ди¬оксидазота (NO2), сажа, углеводороды (в том числе канцерогенные), соедине¬ния серы, свинца.
2) Производство электрической и тепловой энергии на тепловых электростанциях, основанное на сжигании органических топлив. Дым, который может содержать: угарный газ (СО), сажу, диоксидсеры(SO2), летучую золу, смолистые вещест¬ва и др
3) Черная металлургия. Пыль (железо, кремнезем, фосфор, сера, оксиды алюминия), диоксид серы (SO2), угарный газ (СО).
4) Цветная металлургия. Пыль (свинец, оксиды мышьяка, олово, сурьма, медь, цинк и тд.), газы (сернистый газ - диоксид серы SO?)
5) Угольная промышленность. Сернистый газ (SO2), угарный газ.(СО), продукты возгонки смолистых веществ.
6) Добыча нефти и ее переработка. Углеводороды, сероводород, дурно пах¬нущие газы.
7) Химическая промышленность. Пары и газы различных химических ве¬ществ (оксиды азота, серы, пары серной кислоты, фтор, хлор и др.)^
Дадим краткую характеристику наиболее распространенных и важных за¬грязнителей атмосферного воздуха населенных мест:
1. Пыль. Пыль представляет собой смесь различных но величине твердых частиц. При любом пылевом загрязнении пыль может быть природной или же из выбросов предприятий. В зависимости от компонентов пыль может быть свин¬цовой, кремниевой и тд. Пыль может вызывать атрофические заболевания, заболевания легких -силикозы (вызываются пылью, содержащей двуокись кремния), гнойничковые заболевания кожи, заболевания глаз (конъюнктивиты и др.), снижение иммунитета и др.
2. Сажа. Сажа содержит большое количество канцерогенных веществ. Истори¬чески известна так называемая болезнь трубочистов - рак кожи. Это объяс¬няется тем, что такой компонент сажи как 3,4-бензпирен является сильным канцерогеном.
3. Сернистый газ (диоксид серы, сернистыйангидрид)-SO2. Образуется при сгорании любого вида топлива. Особенно много серни¬стого газа образуется при сгорании каменного угля. Сернистый ангидрид ток¬сичен. Во влажном воздухе сернистый ангидрид присоединяет воду с образо¬ванием сернистой кислоты. Из сернистой кислоты образуется серная кисло¬та. Серная кислота воздействует на слизистые оболочки (дыхательной систе¬мы, ЖКТ), разрушает их, что способствует возникновению инфекционных заболеваний. Кроме того большое количество сернистого газа в воздухе мо¬жет приводить к нарушению окислительно-восстановите льных процессов, ферментативной активности, нарушению высшей нервной деятельности и др. Сернистый газ i-убительно действует на зеленые растения..
4. Оксиды азота. Всегда выделяются при сгорании топлива (особенно автомобильного) и получении азотистой кислоты Т.е. наибольшее количество оксидов азота в воздухе отмечается в районах химических комбинатов и автомагистралей.Из оксидов азота может образовываться азотная кислота, которая небла¬гоприятно воздействуют на дыхательные пути, миокард. Изменения со сторо¬ны миокарда бывают значительно выражены даже при небольших концен¬трациях азотной кислоты и ее солей. Высокая концентрация оксидов азота в атмосфере часто бывает причиной кислотных дождей (с рН до 4 и ниже).Высокая кислотность дождей снижает урожайность. Выпадая у озер, ки-лотные дожди повышают кислотность озерной воды, вызывает уменьшение юличества ценных сортов рыбы и др.
5. Угарный газ (СО) Образуется при сгорании любого топлива, при работе автомобильных двигателей. Угарный газ может быть причиной острого отравления. Попадая в кровь, угарный газ образует комплекс с гемоглобином -карбоксигемоглобин. Сродство СО к гемоглобину в сотни раз выше чем у кислорода. Из-за связывания гемоглобина угарным газом возникает гипоксия в ;вязи с нарушением транспорта кислорода кровью. При связывании половины всего гемоглобина крови угарным газом (при 5О % карбоксигемоглобина от всего количества гемоглобина) происходит тяжелое отравление с возможным летальным исходом.Существует возможность хронического отравления угарным газом, связанного с постоянным вдыханием его в повышенных концентрациях и постоянным присутствием в крови карбоксигемоглобина (у курильщиков, инспекторов ГАИ, регулировщиков). При этом могут возникать астеновегетативный синдром, бессонница, головные боли, ухудшение памяти, снижение быстроты рефлекторных реакций и др.
Меры по охране атмосферного воздуха от загрязнений.
1) Технологические мероприятия. Заключаются в совершенствовании технологий с целью уменьшения количества вредных выбросов в атмосферу. К технологическим мероприятиям можно осуществлять по следующим на¬правлениям:
1. Замена токсичных веществ, использующихся в производствен¬ном цикле, на менее токсичные.
2. Замена сухих методов работы мокрыми.
3. Герметизация и автоматизация производственного процесса.
4. Создание замкнутых технологических циклов, безотходных про¬изводств и тд.
2) Санитарно-технические мероприятия - организация очистки про¬мышленных выбросов на.очистных сооружениях. Очистка может осуществ¬ляться следующими методами:
1. Использование сухих механических, пылеулавливателей (пьлеотстойная камера, циклон и др.)
2. Использование фильтров (матерчатые, бумажные, масляные фильтры, электрофильтры и др)
3. Мокрая газоочистка (гравийный фильтр, полый скруббер) и другие методы..
3) Планировочные мероприятия. Заключаются в правильном взаиморасположении промышленных и жилых зон.
1. Удаление жилых и промышленных зон друг от друга с созданием санитарно-защитных зон(разрывов), которые лучше озеленять газоустойчивыми растениями. Ширина санитарно-защитной зоны зависит от предприятия и обычно составляет от 50 до 1000 метров.
2. Взаимное расположение предприятий и жилых зон с учетом на¬правления преобладающих ветров.
4) Установление предельно допустимых концентраций(ПДК).
ПДК - это максимальная концентрация, в которой допускается нахожде¬ние вещества в атмосферном воздухе. Принципы установления ПДК вредных веществ в атмосферном воздухе.
При установке ПДК находят такой уровень ПДК, который (по современным понятиям) не представлял бы угрозы при воздействии в течение всей жизни. В настоящее время установлено 450 ПДК для атмосферного воздуха. Кроме ПДК устанавливаются ВДК (временно допустимые концентрации)илиориентиро вочно безопасные уровни воздействия (ОБУВ), которые не так точны, так как получены расчетным путем, на основании сравнения ток¬сичности с близкими веществами. Они быстрее изменяются и устанавливают¬ся на небольшие сроки (временно). Эти ориентировочно безопасные уровни воздействия (ОБУВ) или ВДК в настоящее время составляют группу в 1500 веществ. Таким образом, примерно 2000 химических соединений в воздухе узаконены и называются нормативными.
22. Вентиляция помещений обеспечивает своевременное удаление избытка углекислого газа, тепла, влаги, пыли, вредных веществ, в общем, результатов различных бытовых процессов и пребывания в помещении людей.
Виды вентиляции.
1) Естественная. Заключается в естественном воздухообмене между по¬мещением и внешней средой за счет разницы температур внутреннего и на¬ружного воздуха, ветра и тд.. Естественная вентиляция может быть:
1. Неорганизованная (путем фильтрации воздуха через щели)
2. Организованная (через открытые форточки, окна и тд) - проветривание.
2) Искусственная.
1. Приточная - искусственная подача наружного воздуха в помещение.
2. Вытяжная - искусственная вытяжка воздуха из помещения.
3. Приточно-вытяжная - искусственный приток и вытяжка. Поступление воздуха происходит через приточную камеру, где он обогревается, фильтруется и удаляется через вентиляцию.
Общий принцип вентиляции заключается в том, что
• В грязных помещениях должна преобладать вытяжка (чтобы исключить самопроизвольное поступление грязного воздуха в соседние помещения)
• В чистых помещениях должен преобладать приток (чтобы в них не поступал воздух из грязных помещений).
Количество воздуха, которое необходимо подать в помещение на одного человека в час называется объемом вентиляции.
Он может быть определен по влажности, температуре, но точнее всего определяется по углекислому газу.
Методика: В воздухе содержится 0.4%% углекислого газа. Как уже упоминалось, для помещений, требующих высокого уровня чистоты (палаты, операционные), допускается содержание углекислого газа в воздухе не более 0.7%% в обычных помещениях допускается концентрация до 1%%.
При пребывании в помещении людей количество углекислого газа увеличивается. Один человек выделяет приблизительно 22.6 л углекислого газа в час. Каждый литр подаваемого в помещение воздуха содержит 0.4% углекислого газа, то есть каждый литр этого воздуха содержит 0.4 мл углекислого газа и таким образом может еще "принять" 0.3 мл (0.7 - 0.4) для чистых помещений (до 0.7 мл в литре или 0.7%% ) и 0.6 мл (1 - 0.4) для обычных помещений (до 1 мл в литре или 1%%. ).
Так как каждый час 1 человек выделяет 22.6 л (22600 мл) углекислого газа, а каждый литр подаваемого воздуха может "принять" указанное выше число мл углекислого газа, то количество литров воздуха, которое необходи¬мо подать в помещение на 1 человека в час составляет
1) Для чистых помещений (палаты, операционные) - 22600 / 0.3 = 75000 л = 75 м3 . То есть, 75 м3 воздуха на каждого человека в час должно поступить в помещение для того чтобы концентрация углекислого газа в нем не превысила 0.7 %%.
2) Для обычных помещений - 22600 / 0.6 = 37000 л = 37 м3. То есть, 37 м воздуха на каждого человека в час должно поступить в помещение, для того чтобы концентрация углекислого газа в нем не превысила 1 /оо.
L = (К * N) / (Р - Р,) = (22.6 л * N) / (Р - 0.4%%.) где
L - объем вентиляции (м )
К - количество углекислого газа, выдыхаемого человеком за час (л)
N - число людей в помещении
Р - максимально допустимое содержание углекислоты в помещении (А»)
Pi - содержание углекислого газа в атмосферном воздухе (А»)
По данной формуле мы рассчитываем необходимый объем подаваемого воздуха (необходимый объем вентиляции). Для того, чтобы рассчитать реальный объем воздуха, который подается в помещение за час (реальный объем вентиляции) нужно в формулу вместо Р (ПДК углекислого газа – 1%%, 0.7%%) подставить реальную концентрацию углекислого газа в данном помещении в промилях:
L реальный = (22.6 л * N) / ([СО2]факт - 0.4%%)
где
L реальный - реальный объем вентиляции
[СО2]факт - фактическое содержание углекислого газа в помещении
Для определения' концентрации углекислого газа используют метод Субботина-Нагорского (основан на снижении титра едкого Ва, наиболее точен), метод Реберга (также использование едкого Ва, экспресс-метод), метод Прохорова, фотоколориметрический метод и др.
Другой количественной характеристикой вентиляции, непосредственно связанной с объемом вентиляции, является кратность вентиляции. Кратность вентиляции показывает сколько раз в час воздух в помещении полностью обменивается.
Кратность вентиляции = Объем попадаемого (извлекаемого) в час воздуха
Объем помещения.
Соответственно, чтобы рассчитать для данного помещения необходимую кратность вентиляции нужно в эту формулу в числителе подставить необходимый объем вентиляции. А для того, чтобы узнать, какова реальная кратность вентиляции в помещении в формулу подставляют реальный объем вентиляции (расчет см. выше).
Кратность вентиляции может рассчитываться по притоку (кратность по притоку), тогда в формулу подставляется объем подаваемого в час воздуха и значение указывается со знаком (+), а может рассчитываться по вытяжке (кратность по вытяжке), тогда в формулу подставляется объем извлекаемого в час воздуха и значение указывается со знаком (-).Существует такое понятие как воздушный куб.
Воздушный куб - это необходимый на одного человека объем воздуха. Норма воздушного куба составляет 25-27 м" . Но как было рассчитано выше на одного человека в час требуется подавать объем воздуха 37 м3 , то есть при данной норме воздушного куба (данном объеме помещения.) необходимая кратность воздухообменасоставляет 1.5 (37 м / 25 м = 1.5).
23. Солнечная радиация. Гигиеническое значение ультрафиолетовой радиации. Профилактика ее недостаточности. Состав солнечной радиации у поверхности Земли следующий: инфракрасных лучей – 59%, видимых – 40%, ултрафиолетовых – около 1%. Солнечная радиация оказывает благоприятное воздействие на организм человека, т.к под ее влиянием усиливаются гемо- и эритропоэз, фагоцитарная активность лейкоцитов, нормализуется минеральный и белковый обмены, улучшаются пластические процессы, повышается сопротивляемость организма к простудным и инфекционным заболеваниям. В то же время продолжительное действие солнечного света может вызвать утомление нервной системы. Главное биологическое действие солнечной радиации принадлежит ультрафиолетовым лучам, связанное с рефлекторными реакциями рецепторного аппарата кожи и образованием в ней активных веществ типа гистамина, ацетилхолина и холекальциферола. Умеренное облучение кожи ультрафиолетом увеличивает ее физиологическую работоспособность, поверхностный слой становится более прочным и стойким к механическим воздействиям, повышаются местный иммунитет и барьерная функция. УФ-лучи обладают мощным бактерицидным действием на коже и в окружающей среде. В помещения УФ-лучи через обычное оконное силикатное стекло практически не проникают. Способно пропускать эти лучи увиолевое стекло. Поэтому важно регулярное пребывание на открытом воздухе.
24. УФ лучи обладают наибольшей биологической активностью. Видимые лучи заметно влияют на биоритмы, обмен веществ, общий тонус организма. ИК- лучи обладают тепловым воздействием. Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы.
Наименование Аббревиатура Длина волны в нанометрах
Ближний NUV 400 нм — 300 нм
Средний MUV 300 нм — 200 нм
Дальний FUV 200 нм — 122 нм
Экстремальный EUV, XUV 121 нм — 10 нм
Ультрафиолет А, длинноволновой диапазон UVA 400 нм — 315 нм
Ультрафиолет B, средневолновой UVB 315 нм — 280 нм
Ультрафиолет С, коротковолновой UVC 280 нм — 100 нм
Ближний ультрафиолетовый диапазон часто называют «черным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения.Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.
Воздействие на здоровье человека
Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:
Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
УФ-B лучи (UVB, 280—315 нм)
Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)
Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водяным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA и в небольшой доле — UVB.
Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам. Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи (меланому) и преждевременное старение.
Ультрафиолетовое излучение практически неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Мягкий ультрафиолет (300-380 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста[2]. Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают.Эффекты. Эритема кожи за счёт сосудорасширяющего действия улучшает её питание.Это благотворно влияет на регенераторные процессы. Солнечная радиация обеспечивает образование в организме витамина Д,обладающего антирахитическим действием. УФ лучи благотворно влияют на обмен веществ, на функцию кроветворения, иммунную активность, работоспособность и психическую деятельность .Вследствие бактерицидного действия УФ лучи оздоравливают окружающую среду.нельзя злоупотреблять излишним пребыванием на солнце, так как под его влиянием возможно перерождение родимых пятен и других образований кожи.
Применение ультрафиолетового излучения в медицине связано с тем, что оно обладает бактерицидным, мутагенным, терапевтическим (лечебным), антимитотическим и профилактическим действиями, дезинфекция; лазерная биомедицина
25. При УФ-недостаточности понижается устойчивость организма к вредным воздействиям внешней среды, в частности к инфекционным заболеваниям, в том числе гриппу, ангине и т. д. Значительно снижается работоспособность, падает успеваемость детей в школах. Естественные солнечные или УФ-облучения от искусственных источников света компенсируют состояние светового голодания. УФ-излучение оказывает антирахитическое действие благодаря образованию витамина D в коже, изменяет окислительные и обменные процессы. Под влиянием УФ-облучения происходят улучшение кровообращения, нормализация нарушенной функции гипофиз — кора надпочечников, симпатоадреналовой системы, активация ряда ферментативных процессов, фагоцитоза, повышение иммунитета, проявление десенсибилизирующего действия. Для профилактических облучений разных контингентов населения используют УФ-облучательные установки длительного и кратковременного действия.
При длительном действии все находящиеся в помещении люди подвергаются воздействию небольшой интенсивности УФ-излучения в течение всего времени пребывания в помещении. С этой целью используют люминесцентные (эритемные) лампы —ЛЭ, излучающие длинноволновые УФ-лучи (ДУФ) в диапазоне 320—280 нм с максимумом излучения 310—320 нм, наиболее биологически активной области УФ-спектра.
С целью обогащения УФ-излучением искусственного освещения помещений лампы ЛЭ-30 помещают в арматуру, предназначенную для люминесцентных ламп (ламп дневного света), при условии, если светильник не перекрыт снизу стеклом. При размещении эритемных ламп в таких облучателях расчет дозы облучения и их количество зависят от площади помещения и продолжительности пребывания в ней людей. Примерная суточная доза достигается при горении 5—6 эритемных ламп в течение 3—3,5 ч в помещении площадью 50 м2.
Облучатели следует располагать на расстоянии 2,6—2,8 м от пола. Добиться хорошего профилактического эффекта указанными дозами можно при условии длительного применения излучения эритемных ламп (в течение 3,5 — 4 мес), поэтому пользование ими целесообразно в местах постоянного пребывания людей (в школах, детских садах, яслях, производственных помещениях). При кратковременном действии УФ-облучательных установок проводятся общие облучения последовательно передней и задней поверхностей тела об-наженных людей постепенно возрастающими дозами.
Облучение взрослых начинают с 1/2 —1/3 детей — с 1/4 биодозы и доводят до 2—3 биодоз, недоношенных и ослабленных детей — с 1/3—1/10 (иногда с 1/16) до 1 биодозы, через день, всего 15—20 раз (методики № 141 и 143). С этой целью для групповых или индивидуальных облучений применяют облучатели эритемные передвижные (ОЭП с 9 лампами ЛЭ-30), облучатели маячные большие (ОКБ с лампами ДРТ-1000), маячные малые (ОКМ с лампами ДРТ-370) и облучатели стационарные (ОКБ с лампами ДРТ-370) в детской практике и на дому — облучатели настольные (с лампами ДРТ-220).
Противопоказаниями для местных и общих УФ-облучений являются злокачественные новообразования, системная красная волчанка, активная форма туберкулез легких, лихорадочные состояния, наклонность к крово-точению, недостаточность кровообращения II и III степени, артериальная гипертензия III степени, выраженный атеросклероз, гипертиреоз, заболевания почек и печени с недостаточностью функции, кахексия, малярия, повышенная чувствительность к УФ-лучам. АУФОК противопоказана при порфирии, фотодерматозах, тромбоцитопении, гепато- и нефропатии, наклонности к кровотечению, инфаркте миокарда (первые 2—3 нед.), остром нарушении мозгового кровообращения, злокачественных новообразованиях.
При определении индивидуальной биологической дозы (биодозы) УФ-облучения сначала устанавливают минимальную продолжительность облучения УФ-лучами для получения самой слабой (пороговой) эритемной реакции. Биодозиметр помещают на коже живота, лампа УФ-излучателя находится на расстоянии 50 см. Облучение начинают с 1/2 мин (первое отверстие в биодозиметре) и заканчивают 3 мин(последнее отверстие). Интенсивность эритемы определяют через 8—24 ч. При УФ-терапии группы больных можно ориентироваться на средние результаты, полученные при определении биодозы от данной лампы у 10 человек.
