- •§5 Дифракционная решетка.
- •4.7. Разрешающая способность оптических приборов
- •4.8. Понятие о голографии
- •§ 5. Поляризация света при двойном лучепреломлении
- •§ 6. Поляризация света на основе явления дихроизма
- •§ 7. Закон Малюса
- •§ 8. Анализ поляризованного света
- •§ 9. Искусственная оптическая анизотропия
- •§ 10. Оптическая активность
- •Закон Стефана — Больцмана
- •Закон излучения Кирхгофа
- •[Править]Применения закона Кирхгофа [править]в астрофизике
- •Закон смещения Вина
- •[Править]Общий вид закона смещения Вина
- •[Править]Вывод закона
- •[Править]Примеры
- •17) Описание опыта
- •Flash-анимация опыта
- •Законы фотоэффекта
- •История физики Описание опыта Столетовым а.Г.
- •Выводы Столетова а.Г.
- •[Править]Исторический очерк
- •[Править]Решения
- •Квантовая механика Полупроводники Физика атомного ядра
- •Законы сохранения электрического заряда и числа нуклонов
- •Законы сохранения энергии и импульса
- •Закон сохранения момента количества движения
- •Закон сохранения пространственной четности
- •Основные положения и основные понятия мкт.
- •Уравнение состояния идеального газа. Опытные газовые законы.
- •Основное уравнение мкт идеальных газов.
- •Виды теплопередачи: теплопроводность, конвекция, излучение
- •[Править]Идеальные газы
- •[Править]Основные принципы
- •[Править]Вычисление работы и кпд в термодинамическом цикле
- •[Править]Цикл Карно и максимальный кпд тепловой машины
- •[Править]Выведение [править]Частный случай: два тепловых резервуара
- •[Править]Общий случай: много тепловых резервуаров
- •[Править]Cледствия
[Править]Идеальные газы
Согласно
закону Джоуля, выведенному эмпирически,
внутренняя энергия идеального
газа не
зависит от давления или объёма. Исходя
из этого факта, можно получить выражение
для изменения внутренней энергии
идеального газа. По определению молярной
теплоёмкости при
постоянном объёме,
.
Так как внутренняя энергия идеального
газа является функцией только от
температуры, то
.
Эта
же формула верна и для вычисления
изменения внутренней энергии любого
тела, но только в процессах при постоянном
объёме (изохорных
процессах);
в общем случае
является
функцией и температуры, и объёма.
Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:
,
где
—
количество вещества,
—
изменение температуры.
Для идеального газа внутренняя энергия равна:
,
где
-
количество степеней
свободы,
- универсальная
газовая постоянная.
39)
Термодинами́ческие ци́клы — круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают.
Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.
Компонентами любой тепловой машины являются рабочее тело, нагреватель и холодильник (с помощью которых меняется состояние рабочего тела).
Обратимым называют цикл, который можно провести как в прямом, так и в обратном направлении в замкнутой системе. Суммарная энтропиясистемы при прохождении такого цикла не меняется. Единственным обратимым циклом для машины, в которой передача тепла осуществляется только между рабочим телом, нагревателем и холодильником, является Цикл Карно. Существуют также другие циклы (например, цикл Стирлинга ицикл Эрикссона), в которых обратимость достигается путём введения дополнительного теплового резервуара — регенератора. Общим (т.е. указанные циклы частный случай) для всех этих циклов с регенерацией является Цикл Рейтлингера. Можно показать (см. статью Цикл Карно), что обратимые циклы обладают наибольшей эффективностью.
Содержание [убрать]
|
[Править]Основные принципы
Прямое преобразование тепловой энергии в работу запрещается постулатом Томсона (см. Второе начало термодинамики). Поэтому для этой цели используются термодинамические циклы.
Для
того, чтобы управлять состоянием рабочего
тела, в тепловую машину входят нагреватель
и холодильник. В каждом цикле рабочее
тело забирает некоторое количество
теплоты (
)
у нагревателя и отдаёт количество
теплоты
холодильнику.
Работа, совершённая тепловой машиной
в цикле, равна, таким образом,
,
так
как изменение внутренней энергии
в
круговом процессе равно нулю (это функция
состояния).
Напомним, что работа не является функцией состояния, иначе суммарная работа за цикл также была бы равна нулю.
При этом нагреватель потратил энергию . Поэтому тепловой, или, как его ещё называют, термический или термодинамический коэффициент полезного действия тепловой машины (отношение полезной работы к затраченной тепловой энергии) равен
.
