Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика экзамен.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
1.53 Mб
Скачать

Виды теплопередачи: теплопроводность, конвекция, излучение

Q - энергия, которую тело теряет или приобретает при передаче тепла. Формула количества теплоты зависит от протекающего процесса. Формулы количества теплоты при некоторых процессах:  Количество теплоты при нагревании и охлаждении.  Количество теплоты при плавлении или кристаллизации. Количество теплоты при кипении, испарении жидкости и конденсации пара.  Количество теплоты при сгорании топлива. Количество теплоты всегда передается от более горячих тел к более холодным до достижения ими одинаковой температуры (теплового равновесия), если нет иных процессов, кроме теплопередачи. В замкнутой системе тел выполняется уравнение теплового балланса: Q1 + Q2 + ... = 0 - количество теплоты, которое теряют горячие тела, равно количеству тепла, получаемому холодными. Полезные формулы: К оличество теплоты, переданное телу,  идет на изменение его внутренней энергии  и на совершение им работы (Первый закон термодинамики).  Закон Джоуля-Ленца: в неподвижном металлическом проводнике вся энергия электрического тока превращается в тепло: закон Джоуля - Ленца.

В термодинамике для характеристики тепловых свойств тел используется понятие теплоемкости.

Теплоемкость - количество теплоты необходимое для нагревания тела на один Кельвин

(9.11)

Удельной теплоемкостью называется величина, числено равная теплоте, которую надо сообщить единице массы тела для повышения его температуры на один Кельвин:

(9.12)

Отсюда можно определить количество теплоты, необходимое для нагревания вещества, массы m

(9.13)

Молярная теплоемкость - количество тепла необходимое для нагревания одного моля вещества на один Кельвин

(9.14)

Воспользовавшись I законом термодинамики выражение (9.11) можно переписать в виде

(9.15)

откуда следует, что теплоемкость есть функция процесса, т.е. теплоемкость системы зависит от того каким образом система переходит из одного состояния в другое. Вообще говоря, таких процессов может быть сколько угодно, фактически же используются чаще всего теплоемкость при р=const(Cp) и при V=const(CV).

38)

Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

где

  •  — подведённое к телу количество теплоты, измеренное в джоулях

  • [1] — работа, совершаемая телом против внешних сил, измеренная в джоулях

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

где

  •  — температура, измеренная в кельвинах

  •  — энтропия, измеренная в джоулях/кельвин

  •  — давление, измеренное в паскалях

  •  — химический потенциал

  •  — количество частиц в системе